IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i11p485-d1508278.html
   My bibliography  Save this article

Optimizing Multivariate Time Series Forecasting with Data Augmentation

Author

Listed:
  • Seyed Sina Aria

    (School of Industrial Engineering, College of Engineering, University of Tehran, Tehran 19395-4697, Iran)

  • Seyed Hossein Iranmanesh

    (School of Industrial Engineering, College of Engineering, University of Tehran, Tehran 19395-4697, Iran)

  • Hossein Hassani

    (School of Industrial Engineering, College of Engineering, University of Tehran, Tehran 19395-4697, Iran)

Abstract

The convergence of data mining and deep learning has become an invaluable tool for gaining insights into evolving events and trends. However, a persistent challenge in utilizing these techniques for forecasting lies in the limited access to comprehensive, error-free data. This challenge is particularly pronounced in financial time series datasets, which are known for their volatility. To address this issue, a novel approach to data augmentation has been introduced, specifically tailored for financial time series forecasting. This approach leverages the power of Generative Adversarial Networks to generate synthetic data that replicate the distribution of authentic data. By integrating synthetic data with real data, the proposed approach significantly improves forecasting accuracy. Tests with real datasets have proven that this method offers a marked improvement over models that rely only on real data.

Suggested Citation

  • Seyed Sina Aria & Seyed Hossein Iranmanesh & Hossein Hassani, 2024. "Optimizing Multivariate Time Series Forecasting with Data Augmentation," JRFM, MDPI, vol. 17(11), pages 1-19, October.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:11:p:485-:d:1508278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/11/485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/11/485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    2. Liu, Xiaolei & Lin, Zi, 2021. "Impact of Covid-19 pandemic on electricity demand in the UK based on multivariate time series forecasting with Bidirectional Long Short Term Memory," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yukseltan, E. & Kok, A. & Yucekaya, A. & Bilge, A. & Aktunc, E. Agca & Hekimoglu, M., 2022. "The impact of the COVID-19 pandemic and behavioral restrictions on electricity consumption and the daily demand curve in Turkey," Utilities Policy, Elsevier, vol. 76(C).
    2. Quintero Gutiérrez, Laura Victoria & García Rendón, John & Gutiérrez Gómez, Alejandro, 2024. "Impact of COVID-19 preventive measures on electricity demand: Evidence from Colombia," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    3. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    4. Nicolas Boursin & Carl Remlinger & Joseph Mikael & Carol Anne Hargreaves, 2022. "Deep Generators on Commodity Markets; application to Deep Hedging," Papers 2205.13942, arXiv.org.
    5. Weilong Fu & Ali Hirsa & Jorg Osterrieder, 2022. "Simulating financial time series using attention," Papers 2207.00493, arXiv.org.
    6. Shun Chen & Lingling Guo & Lei Ge, 2024. "Increasing the Hong Kong Stock Market Predictability: A Temporal Convolutional Network Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2853-2878, November.
    7. Luca Grilli & Domenico Santoro, 2022. "Forecasting financial time series with Boltzmann entropy through neural networks," Computational Management Science, Springer, vol. 19(4), pages 665-681, October.
    8. Aleksandar Arandjelovi'c & Julia Eisenberg, 2024. "Reinsurance with neural networks," Papers 2408.06168, arXiv.org.
    9. Hans Buehler & Blanka Horvath & Yannick Limmer & Thorsten Schmidt, 2025. "Uncertainty-Aware Strategies: A Model-Agnostic Framework for Robust Financial Optimization through Subsampling," Papers 2506.07299, arXiv.org.
    10. Mohamed Hamdouche & Pierre Henry-Labordere & Huy^en Pham, 2023. "Generative modeling for time series via Schr{\"o}dinger bridge," Papers 2304.05093, arXiv.org.
    11. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    12. Sohyeon Kwon & Yongjae Lee, 2024. "Can GANs Learn the Stylized Facts of Financial Time Series?," Papers 2410.09850, arXiv.org.
    13. Jingyi Gu & Wenlu Du & Guiling Wang, 2024. "RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval Construction," Papers 2402.10760, arXiv.org.
    14. Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.
    15. Nicolas Boursin & Carl Remlinger & Joseph Mikael, 2022. "Deep Generators on Commodity Markets Application to Deep Hedging," Risks, MDPI, vol. 11(1), pages 1-18, December.
    16. Jorino van Rhijn & Cornelis W. Oosterlee & Lech A. Grzelak & Shuaiqiang Liu, 2021. "Monte Carlo Simulation of SDEs using GANs," Papers 2104.01437, arXiv.org.
    17. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    18. Haoyang Cao & Xin Guo, 2021. "Generative Adversarial Network: Some Analytical Perspectives," Papers 2104.12210, arXiv.org, revised Sep 2021.
    19. Song Wei & Andrea Coletta & Svitlana Vyetrenko & Tucker Balch, 2023. "INTAGS: Interactive Agent-Guided Simulation," Papers 2309.01784, arXiv.org, revised Nov 2023.
    20. Rama Cont & Mihai Cucuringu & Renyuan Xu & Chao Zhang, 2022. "Tail-GAN: Learning to Simulate Tail Risk Scenarios," Papers 2203.01664, arXiv.org, revised May 2025.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:11:p:485-:d:1508278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.