IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i1p25-d1022549.html
   My bibliography  Save this article

The Effect of COVID-19 on Cryptocurrencies and the Stock Market Volatility: A Two-Stage DCC-EGARCH Model Analysis

Author

Listed:
  • Apostolos Ampountolas

    (School of Hospitality Administration, Boston University, Boston, MA 02215, USA
    Department of Mathematics, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK)

Abstract

This research examines the correlations between the return volatility of cryptocurrencies, global stock market indices, and the spillover effects of the COVID-19 pandemic. For this purpose, we employed a two-stage multivariate volatility exponential GARCH (EGARCH) model with an integrated dynamic conditional correlation (DCC) approach to measure the impact on the financial portfolio returns from 2019 to 2020. Moreover, we used value-at-risk (VaR) and value-at-risk measurements based on the Cornish–Fisher expansion (CFVaR). The empirical results show significant long- and short-term spillover effects. The two-stage multivariate EGARCH model’s results show that the conditional volatilities of both asset portfolios surge more after positive news and respond well to previous shocks. As a result, financial assets have low unconditional volatility and the lowest risk when there are no external interruptions. Despite the financial assets’ sensitivity to shocks, they exhibit some resistance to fluctuations in market confidence. The VaR performance comparison results with the assets portfolios differ. During the COVID-19 outbreak, the Dow (DJI) index reports VaR’s highest loss, followed by the S&P500. Conversely, the CFVaR reports negative risk results for the entire cryptocurrency portfolio during the pandemic, except for the Ethereum (ETH).

Suggested Citation

  • Apostolos Ampountolas, 2023. "The Effect of COVID-19 on Cryptocurrencies and the Stock Market Volatility: A Two-Stage DCC-EGARCH Model Analysis," JRFM, MDPI, vol. 16(1), pages 1-17, January.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:1:p:25-:d:1022549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/1/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/1/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cdl:ucsdec:qt5s2218dp is not listed on IDEAS
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Uddin, Gazi Salah & Yahya, Muhammad & Goswami, Gour Gobinda & Lucey, Brian & Ahmed, Ali, 2022. "Stock market contagion during the COVID-19 pandemic in emerging economies," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 302-309.
    4. Umar, Zaghum & Gubareva, Mariya, 2020. "A time–frequency analysis of the impact of the Covid-19 induced panic on the volatility of currency and cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
    5. Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).
    6. Kejia Yan & Huqin Yan & Rakesh Gupta, 2022. "Are GARCH and DCC Values of 10 Cryptocurrencies Affected by COVID-19?," JRFM, MDPI, vol. 15(3), pages 1-25, March.
    7. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apostolos Ampountolas, 2023. "Comparative Analysis of Machine Learning, Hybrid, and Deep Learning Forecasting Models: Evidence from European Financial Markets and Bitcoins," Forecasting, MDPI, vol. 5(2), pages 1-15, June.
    2. Mukul Bhatnagar & Sanjay Taneja & Ramona Rupeika-Apoga, 2023. "Demystifying the Effect of the News (Shocks) on Crypto Market Volatility," JRFM, MDPI, vol. 16(2), pages 1-16, February.
    3. Apostolos Ampountolas, 2023. "Comparative Analysis of Machine Learning, Hybrid, and Deep Learning Forecasting Models Evidence from European Financial Markets and Bitcoins," Papers 2307.08853, arXiv.org.
    4. Anas Eisa Abdelkreem Mohammed & Henry Mwambi & Bernard Omolo, 2024. "Time-Varying Correlations between JSE.JO Stock Market and Its Partners Using Symmetric and Asymmetric Dynamic Conditional Correlation Models," Stats, MDPI, vol. 7(3), pages 1-16, July.
    5. Alberto Manelli & Roberta Pace & Maria Leone, 2023. "The Financial Derivatives Market and the Pandemic: BioNTech and Moderna Volatility," JRFM, MDPI, vol. 16(10), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apostolos Ampountolas, 2023. "The Effect of COVID-19 on Cryptocurrencies and the Stock Market Volatility -- A Two-Stage DCC-EGARCH Model Analysis," Papers 2307.09137, arXiv.org.
    2. Onur Özdemir, 2022. "Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: evidence from DCC-GARCH and wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
    3. Echaust, Krzysztof & Just, Małgorzata & Kliber, Agata, 2024. "To hedge or not to hedge? Cryptocurrencies, gold and oil against stock market risk," International Review of Financial Analysis, Elsevier, vol. 94(C).
    4. Yang, Cai & Wang, Xinyi & Gao, Wang, 2022. "Is Bitcoin a better hedging and safe-haven investment than traditional assets against currencies? Evidence from the time-frequency domain approach," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    5. Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
    6. Feng, Jingyu & Yuan, Ying & Jiang, Mingxuan, 2024. "Are stablecoins better safe havens or hedges against global stock markets than other assets? Comparative analysis during the COVID-19 pandemic," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 275-301.
    7. Just, Małgorzata & Echaust, Krzysztof, 2024. "Cryptocurrencies against stock market risk: New insights into hedging effectiveness," Research in International Business and Finance, Elsevier, vol. 67(PA).
    8. Demiralay, Sercan & Golitsis, Petros, 2021. "On the dynamic equicorrelations in cryptocurrency market," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 524-533.
    9. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    10. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    11. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    12. NEIFAR, MALIKA & HarzAllah, AMIRA, 2025. "Integration, Contagion and Turmoils; Evidence from Emerging markets," MPRA Paper 123775, University Library of Munich, Germany, revised 25 Feb 2025.
    13. Chen, Qihao & Huang, Zhuo & Liang, Fang, 2023. "Measuring systemic risk with high-frequency data: A realized GARCH approach," Finance Research Letters, Elsevier, vol. 54(C).
    14. Akhtaruzzaman, Md & Boubaker, Sabri & Sensoy, Ahmet, 2021. "Financial contagion during COVID–19 crisis," Finance Research Letters, Elsevier, vol. 38(C).
    15. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    16. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    17. Jin Guo & Tetsuji Tanaka, 2020. "The Effectiveness of Self-Sufficiency Policy: International Price Transmissions in Beef Markets," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
    18. Afonso, António & Gomes, Pedro & Taamouti, Abderrahim, 2014. "Sovereign credit ratings, market volatility, and financial gains," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 20-33.
    19. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    20. Duan, Kun & Zhao, Yanqi & Urquhart, Andrew & Huang, Yingying, 2023. "Do clean and dirty cryptocurrencies connect with financial assets differently? The role of economic policy uncertainty," Energy Economics, Elsevier, vol. 127(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:1:p:25-:d:1022549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.