IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v13y2025i2p107-d1674580.html
   My bibliography  Save this article

Highlighting the Role of Morality in News Framing and Its Short-Term Effects on Stock Market Fluctuations

Author

Listed:
  • Paula T. Wang

    (Media Neuroscience Lab, Department of Communication, University of California Santa Barbara, Santa Barbara, CA 93106, USA)

  • Musa Malik

    (Media Neuroscience Lab, Department of Communication, University of California Santa Barbara, Santa Barbara, CA 93106, USA)

  • René Weber

    (Media Neuroscience Lab, Department of Communication, University of California Santa Barbara, Santa Barbara, CA 93106, USA
    Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
    Division of Communication and Media, Ewha Woman’s University, Seoul 03760, Republic of Korea)

Abstract

The Model of Intuitive Morality and Exemplars (MIME) suggests that news audiences, including investors, evaluate news based on their moral frames, and that these moral evaluations shape behavior. We extracted moral signals from 382,185 news articles across an 8-month period and examined their predictive effect on stock market movement. Results indicate that morality is a strong predictor during low economic periods and is driven by subversion and sanctity. Overall, our study suggests that moral framing and its foundations are important considerations for research on news effects, especially during periods of economic instability. The study provides an additional theoretical perspective on stock market fluctuations as well as practical implications for stakeholders with an interest in dampening collective panics and stabilizing investor sentiment.

Suggested Citation

  • Paula T. Wang & Musa Malik & René Weber, 2025. "Highlighting the Role of Morality in News Framing and Its Short-Term Effects on Stock Market Fluctuations," IJFS, MDPI, vol. 13(2), pages 1-19, June.
  • Handle: RePEc:gam:jijfss:v:13:y:2025:i:2:p:107-:d:1674580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/13/2/107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/13/2/107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rickard Nyman & Sujit Kapadia & David Tuckett & David Gregory & Paul Ormerod & Robert Smith, 2018. "News and narratives in financial systems: exploiting big data for systemic risk assessment," Bank of England working papers 704, Bank of England.
    2. Harris, Colin & Myers, Andrew & Kaiser, Adam, 2023. "The humanizing effect of market interaction," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 489-507.
    3. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    4. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    5. Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021. "News and narratives in financial systems: Exploiting big data for systemic risk assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021. "News and narratives in financial systems: Exploiting big data for systemic risk assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    2. Amer Demirovic & Ali Kabiri & David Tuckett & Rickard Nyman, 2020. "A common risk factor and the correlation between equity and corporate bond returns," Journal of Asset Management, Palgrave Macmillan, vol. 21(2), pages 119-134, March.
    3. Borgioli, Stefano & Gallo, Giampiero M. & Ongari, Chiara, 2024. "Financial returns, sentiment and market volatility. A dynamic assessment," Working Paper Series 2999, European Central Bank.
    4. Yuting Chen & Don Bredin & Valerio Potì & Roman Matkovskyy, 2022. "COVID risk narratives: a computational linguistic approach to the econometric identification of narrative risk during a pandemic," Digital Finance, Springer, vol. 4(1), pages 17-61, March.
    5. Youngjoon Lee & Soohyon Kim & Ki Young Park, 2018. "Deciphering Monetary Policy Committee Minutes with Text Mining Approach: A Case of South Korea," Working papers 2018rwp-132, Yonsei University, Yonsei Economics Research Institute.
    6. Matteo Accornero & Mirko Moscatelli, 2018. "Listening to the buzz: social media sentiment and retail depositors' trust," Temi di discussione (Economic working papers) 1165, Bank of Italy, Economic Research and International Relations Area.
    7. Young Joon Lee & Soohyon Kim & Ki Young Park, 2019. "Deciphering Monetary Policy Board Minutes with Text Mining: The Case of South Korea," Korean Economic Review, Korean Economic Association, vol. 35, pages 471-511.
    8. Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
    9. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2020. "Making text count: economic forecasting using newspaper text," Bank of England working papers 865, Bank of England.
    10. Wei, Lu & Wei, Mingye & Jing, Haozhe & Jing, Zhongbo, 2025. "Annual report tone and bank risk-taking behavior: Evidence from China," Research in International Business and Finance, Elsevier, vol. 77(PA).
    11. Nikoleta Anesti & Eleni Kalamara & George Kapetanios, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
    12. Ashwin,Julian & Rao,Vijayendra & Biradavolu,Monica Rao & Chhabra,Aditya & Haque,Arshia & Khan,Afsana Iffat & Krishnan,Nandini, 2022. "A Method to Scale-Up Interpretative Qualitative Analysis, with an Application toAspirations in Cox’s Bazaar, Bangladesh," Policy Research Working Paper Series 10046, The World Bank.
    13. Ching Hsu & Tina Yu & Shu-Heng Chen, 2021. "Narrative economics using textual analysis of newspaper data: new insights into the U.S. Silver Purchase Act and Chinese price level in 1928–1936," Journal of Computational Social Science, Springer, vol. 4(2), pages 761-785, November.
    14. Fang, Yi & Wang, Qi & Wang, Yanru & Yuan, Yan, 2024. "Media sentiment, deposit stability and bank systemic risk: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 1150-1172.
    15. Aromi, J. Daniel, 2020. "Linking words in economic discourse: Implications for macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1517-1530.
    16. Shen, Shulin & Xia, Le & Shuai, Yulin & Gao, Da, 2022. "Measuring news media sentiment using big data for Chinese stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    17. du Plessis, Emile, 2024. "Reading between the lines: Quantitative text analysis of banking crises," Research in Economics, Elsevier, vol. 78(4).
    18. Luiz Renato Lima & Lucas Lúcio Godeiro & Mohammed Mohsin, 2021. "Time-Varying Dictionary and the Predictive Power of FED Minutes," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 149-181, January.
    19. Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    20. Mariano González-Sánchez & M. Encina Morales de Vega, 2021. "Influence of Bloomberg’s Investor Sentiment Index: Evidence from European Union Financial Sector," Mathematics, MDPI, vol. 9(4), pages 1-21, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:13:y:2025:i:2:p:107-:d:1674580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.