IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v10y2022i2p38-d820074.html
   My bibliography  Save this article

On the Deterministic-Shift Extended CIR Model in a Negative Interest Rate Framework

Author

Listed:
  • Marco Di Francesco

    (UnipolSai Assicurazioni, Via Stalingrado 45, 40128 Bologna, Italy
    These authors contributed equally to this work.)

  • Kevin Kamm

    (Dipartimento di Matematica, Università di Bologna, 40126 Bologna, Italy
    These authors contributed equally to this work.)

Abstract

In this paper, we propose a new exogenous model to address the problem of negative interest rates that preserves the analytical tractability of the original Cox–Ingersoll–Ross (CIR) model with a perfect fit to the observed term-structure. We use the difference between two independent CIR processes and apply the deterministic-shift extension technique. To allow for a fast calibration to the market swaption surface, we apply the Gram–Charlier expansion to calculate the swaption prices in our model. We run several numerical tests to demonstrate the strengths of this model by using Monte-Carlo techniques. In particular, the model produces close Bermudan swaption prices compared to Bloomberg’s Hull–White one-factor model. Moreover, it finds constant maturity swap (CMS) rates very close to Bloomberg’s CMS rates.

Suggested Citation

  • Marco Di Francesco & Kevin Kamm, 2022. "On the Deterministic-Shift Extended CIR Model in a Negative Interest Rate Framework," IJFS, MDPI, vol. 10(2), pages 1-26, May.
  • Handle: RePEc:gam:jijfss:v:10:y:2022:i:2:p:38-:d:820074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/10/2/38/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/10/2/38/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    3. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    4. repec:cdl:anderf:qt43n1k4jb is not listed on IDEAS
    5. Cornelis W Oosterlee & Lech A Grzelak, 2019. "Mathematical Modeling and Computation in Finance:With Exercises and Python and MATLAB Computer Codes," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number q0236, February.
    6. Keiichi Tanaka & Takeshi Yamada & Toshiaki Watanabe, 2010. "Applications of Gram-Charlier expansion and bond moments for pricing of interest rates and credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 645-662.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. repec:uts:finphd:40 is not listed on IDEAS
    6. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    7. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    8. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    9. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    11. Lin, Shih-Kuei & Wang, Shin-Yun & Chen, Carl R. & Xu, Lian-Wen, 2017. "Pricing Range Accrual Interest Rate Swap employing LIBOR market models with jump risks," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 359-373.
    12. Dwight Grant & Gautam Vora, 2006. "Extending the universality of the Heath–Jarrow–Morton model," Review of Financial Economics, John Wiley & Sons, vol. 15(2), pages 129-157.
    13. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    14. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    15. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    16. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    17. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
    18. repec:wyi:journl:002108 is not listed on IDEAS
    19. Alain Monfort & Fulvio Pegoraro, 2006. "Multi-Lag Term Structure Models with Stochastic Risk Premia," Working Papers 2006-29, Center for Research in Economics and Statistics.
    20. Hunt, Julien & Devolder, Pierre, 2011. "Semi-Markov regime switching interest rate models and minimal entropy measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3767-3781.
    21. Yu, Wei-Choun & Zivot, Eric, 2011. "Forecasting the term structures of Treasury and corporate yields using dynamic Nelson-Siegel models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 579-591.
    22. Lahmiri, Salim, 2016. "Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 388-396.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:10:y:2022:i:2:p:38-:d:820074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.