IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i6p4788-d1091558.html
   My bibliography  Save this article

Spatio-Temporal Distribution Characteristics and Drivers of PM 2.5 Pollution in Henan Province, Central China, before and during the COVID-19 Epidemic

Author

Listed:
  • Pengcheng Lv

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China)

  • Haoyu Zhang

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China)

  • Xiaodong Li

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China)

Abstract

PM 2.5 is the main cause of haze pollution, and studying its spatio-temporal distribution and driving factors can provide a scientific basis for prevention and control policies. Therefore, this study uses air quality monitoring information and socioeconomic data before and during the COVID-19 outbreak in 18 prefecture-level cities in Henan Province from 2017 to 2020, using spatial autocorrelation analysis, ArcGIS mapping, and the spatial autocorrelation analysis. ArcGIS mapping and the Durbin model were used to reveal the characteristics of PM 2.5 pollution in Henan Province in terms of spatial and temporal distribution characteristics and analyze its causes. The results show that: (1) The annual average PM 2.5 concentration in Henan Province fluctuates, but decreases from 2017 to 2020, and is higher in the north and lower in the south. (2) The PM 2.5 concentrations in Henan Province in 2017–2020 are positively autocorrelated spatially, with an obvious spatial spillover effect. Areas characterized by a high concentration saw an increase between 2017 and 2019, and a decrease in 2020; values in low-concentration areas remained stable, and the spatial range showed a decreasing trend. (3) The coefficients of socio-economic factors that increased the PM 2.5 concentration were construction output value > industrial electricity consumption > energy intensity; those with negative effects were: environmental regulation > green space coverage ratio > population density. Lastly, PM 2.5 concentrations were negatively correlated with precipitation and temperature, and positively correlated with humidity. Traffic and production restrictions during the COVID-19 epidemic also improved air quality.

Suggested Citation

  • Pengcheng Lv & Haoyu Zhang & Xiaodong Li, 2023. "Spatio-Temporal Distribution Characteristics and Drivers of PM 2.5 Pollution in Henan Province, Central China, before and during the COVID-19 Epidemic," IJERPH, MDPI, vol. 20(6), pages 1-14, March.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:4788-:d:1091558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/6/4788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/6/4788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sunmin Jun & Mengying Li & Juchul Jung, 2022. "Air Pollution (PM 2.5 ) Negatively Affects Urban Livability in South Korea and China," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    2. Bair O. Gomboev & Irina K. Dambueva & Sergey S. Khankhareev & Valentin S. Batomunkuev & Natalya R. Zangeeva & Vitaly E. Tsydypov & Bayanzhargal B. Sharaldaev & Aldar G. Badmaev & Daba Ts.-D. Zhamyanov, 2022. "Atmospheric Air Pollution by Stationary Sources in Ulan-Ude (Buryatia, Russia) and Its Impact on Public Health," IJERPH, MDPI, vol. 19(24), pages 1-13, December.
    3. Ju Wang & Juan Li & Xinlong Li & Chunsheng Fang, 2022. "Characteristics of Air Pollutants Emission and Its Impacts on Public Health of Chengdu, Western China," IJERPH, MDPI, vol. 19(24), pages 1-13, December.
    4. Jun Bai & Shixiang Li & Nan Wang & Jianru Shi & Xianmin Li, 2020. "Spatial Spillover Effect of New Energy Development on Economic Growth in Developing Areas of China—An Empirical Test Based on the Spatial Dubin Model," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    5. Haihua Mo & Kejun Jiang & Peng Wang & Min Shao & Xuemei Wang, 2022. "Co-Benefits of Energy Structure Transformation and Pollution Control for Air Quality and Public Health until 2050 in Guangdong, China," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    6. Ji, Xi & Yao, Yixin & Long, Xianling, 2018. "What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective," Energy Policy, Elsevier, vol. 119(C), pages 458-472.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Bai & Shixiang Li & Nan Wang & Jianru Shi & Xianmin Li, 2020. "Spatial Spillover Effect of New Energy Development on Economic Growth in Developing Areas of China—An Empirical Test Based on the Spatial Dubin Model," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    2. Wang, Xiaomin & Tian, Guanghui & Yang, Dongyang & Zhang, Wenxin & Lu, Debin & Liu, Zhongmei, 2018. "Responses of PM2.5 pollution to urbanization in China," Energy Policy, Elsevier, vol. 123(C), pages 602-610.
    3. Dong, Qichen & Lin, Yongyi & Huang, Jieyu & Chen, Zhongfei, 2020. "Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data," China Economic Review, Elsevier, vol. 59(C).
    4. Hansol Mun & Mengying Li & Juchul Jung, 2022. "Spatial-Temporal Characteristics and Influencing Factors of Particulate Matter: Geodetector Approach," Land, MDPI, vol. 11(12), pages 1-26, December.
    5. Long, Xianling & Ji, Xi, 2019. "Economic Growth Quality, Environmental Sustainability, and Social Welfare in China - Provincial Assessment Based on Genuine Progress Indicator (GPI)," Ecological Economics, Elsevier, vol. 159(C), pages 157-176.
    6. Zhaohua Li & Ziwei Fang & Zhuyu Tang, 2020. "Effects of Imports and Exports on China's PM2.5 Pollution," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(6), pages 28-50, November.
    7. Li, Ding & Gao, Ming & Hou, Wenxuan & Song, Malin & Chen, Jiandong, 2020. "A modified and improved method to measure economy-wide carbon rebound effects based on the PDA-MMI approach," Energy Policy, Elsevier, vol. 147(C).
    8. Yajie Liu & Feng Dong, 2020. "Corruption, Economic Development and Haze Pollution: Evidence from 139 Global Countries," Sustainability, MDPI, vol. 12(9), pages 1-22, April.
    9. Liu, Shuchang & Xiao, Wu & Li, Linlin & Ye, Yanmei & Song, Xiaoli, 2020. "Urban land use efficiency and improvement potential in China: A stochastic frontier analysis," Land Use Policy, Elsevier, vol. 99(C).
    10. Zeng, Jingjing & Liu, Ting & Feiock, Richard & Li, Fei, 2019. "The impacts of China's provincial energy policies on major air pollutants: A spatial econometric analysis," Energy Policy, Elsevier, vol. 132(C), pages 392-403.
    11. Feipeng Guo & Linji Zhang & Zifan Wang & Shaobo Ji, 2022. "Research on Determining the Critical Influencing Factors of Carbon Emission Integrating GRA with an Improved STIRPAT Model: Taking the Yangtze River Delta as an Example," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
    12. Enkhjargal Enkhbat & Yong Geng & Xi Zhang & Huijuan Jiang & Jingyu Liu & Dong Wu, 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    13. Weiwei Xie & Hongbing Deng & Zhaohui Chong, 2019. "The Spatial and Heterogeneity Impacts of Population Urbanization on Fine Particulate (PM 2.5 ) in the Yangtze River Economic Belt, China," IJERPH, MDPI, vol. 16(6), pages 1-17, March.
    14. Hang Zhang & Yong Liu & Dongyang Yang & Guanpeng Dong, 2022. "PM 2.5 Concentrations Variability in North China Explored with a Multi-Scale Spatial Random Effect Model," IJERPH, MDPI, vol. 19(17), pages 1-14, August.
    15. Lan, Jing & Wei, Yiming & Guo, Jie & Li, Qiuming & Liu, Zhen, 2023. "The effect of green finance on industrial pollution emissions: Evidence from China," Resources Policy, Elsevier, vol. 80(C).
    16. Asrah Heintzelman & Gabriel M. Filippelli & Max J. Moreno-Madriñan & Jeffrey S. Wilson & Lixin Wang & Gregory K. Druschel & Vijay O. Lulla, 2023. "Efficacy of Low-Cost Sensor Networks at Detecting Fine-Scale Variations in Particulate Matter in Urban Environments," IJERPH, MDPI, vol. 20(3), pages 1-18, January.
    17. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    18. Lin, Ying & Yang, Xiuyun & Li, Yanan & Yao, Shunbo, 2020. "The effect of forest on PM2.5 concentrations: A spatial panel approach," Forest Policy and Economics, Elsevier, vol. 118(C).
    19. Qu, Weihua & Qu, Guohua & Zhang, Xindong & Robert, Dixon, 2021. "The impact of public participation in environmental behavior on haze pollution and public health in China," Economic Modelling, Elsevier, vol. 98(C), pages 319-335.
    20. Woraphon Yamaka & Rui Shi & Paravee Maneejuk & Chihyi Chi, 2023. "Spatial Spillover Effects of Internet Development on Foreign Trade in China," Sustainability, MDPI, vol. 15(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:4788-:d:1091558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.