IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2455-d1051282.html
   My bibliography  Save this article

Current Perspective on the Role of the Circadian Clock and Extracellular Matrix in Chronic Lung Diseases

Author

Listed:
  • Kameron Hahn

    (Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA)

  • Isaac Kirubakaran Sundar

    (Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA)

Abstract

The circadian clock is a biochemical oscillator that rhythmically regulates physiological and behavioral processes such as inflammation, immunity, and metabolism in mammals. Circadian clock disruption is a key driver for chronic inflammatory as well as fibrotic lung diseases. While the mechanism of circadian clock regulation in the lung has been minimally explored, some evidence suggests that the transforming growth factor β (TGFβ) signaling pathway and subsequent extracellular matrix (ECM) accumulation in the lung may be controlled via a clock-dependent mechanism. Recent advancements in this area led us to believe that pharmacologically targeting the circadian clock molecules may be a novel therapeutic approach for treating chronic inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Here, we update the current perspective on the circadian clock role in TGFβ1 signaling and extracellular matrix production during chronic lung diseases.

Suggested Citation

  • Kameron Hahn & Isaac Kirubakaran Sundar, 2023. "Current Perspective on the Role of the Circadian Clock and Extracellular Matrix in Chronic Lung Diseases," IJERPH, MDPI, vol. 20(3), pages 1-13, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2455-:d:1051282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clifford B. Saper & Thomas E. Scammell & Jun Lu, 2005. "Hypothalamic regulation of sleep and circadian rhythms," Nature, Nature, vol. 437(7063), pages 1257-1263, October.
    2. Laura A. Solt & Yongjun Wang & Subhashis Banerjee & Travis Hughes & Douglas J. Kojetin & Thomas Lundasen & Youseung Shin & Jin Liu & Michael D. Cameron & Romain Noel & Seung-Hee Yoo & Joseph S. Takaha, 2012. "Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists," Nature, Nature, vol. 485(7396), pages 62-68, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junta Tagusari & Toshihito Matsui, 2016. "A Neurophysiological Approach for Evaluating Noise-Induced Sleep Disturbance: Calculating the Time Constant of the Dynamic Characteristics in the Brainstem," IJERPH, MDPI, vol. 13(4), pages 1-15, March.
    2. Michèle Moessinger & Ralf Stürmer & Markus Mühlensiep, 2021. "Auditive beta stimulation as a countermeasure against driver fatigue," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-20, January.
    3. Costa-Font, Joan & Fleche, Sarah & Pagan, Ricardo, 2024. "The labour market returns to sleep," Journal of Health Economics, Elsevier, vol. 93(C).
    4. Qiang Liu & Benjamin J. Bell & Dong Won Kim & Sang Soo Lee & Mehmet F. Keles & Qili Liu & Ian D. Blum & Annette A. Wang & Elijah J. Blank & Jiali Xiong & Joseph L. Bedont & Anna J. Chang & Habon Issa , 2023. "A clock-dependent brake for rhythmic arousal in the dorsomedial hypothalamus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Meghan H. Murray & Aurore Cecile Valfort & Thomas Koelblen & Céline Ronin & Fabrice Ciesielski & Arindam Chatterjee & Giri Babu Veerakanellore & Bahaa Elgendy & John K. Walker & Lamees Hegazy & Thomas, 2022. "Structural basis of synthetic agonist activation of the nuclear receptor REV-ERB," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Fulvio Plescia & Luigi Cirrincione & Daniela Martorana & Caterina Ledda & Venerando Rapisarda & Valentina Castelli & Francesco Martines & Denis Vinnikov & Emanuele Cannizzaro, 2021. "Alcohol Abuse and Insomnia Disorder: Focus on a Group of Night and Day Workers," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    7. Bo-Wei Qin & Lei Zhao & Wei Lin, 2021. "A frequency-amplitude coordinator and its optimal energy consumption for biological oscillators," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Ziyue Wang & Xiang Fei & Xiaotong Liu & Yanjie Wang & Yue Hu & Wanling Peng & Ying-wei Wang & Siyu Zhang & Min Xu, 2022. "REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Barnes, Christopher M. & Schaubroeck, John & Huth, Megan & Ghumman, Sonia, 2011. "Lack of sleep and unethical conduct," Organizational Behavior and Human Decision Processes, Elsevier, vol. 115(2), pages 169-180, July.
    10. Sehyun Yun & Minsuk Kim & Won-Tae Lee & Jin-Ha Yoon & Jong-Uk Won, 2021. "Irregular Work Hours and the Risk of Sleep Disturbance Among Korean Service Workers Required to Suppress Emotion," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    11. Guarana, Cristiano L. & Barnes, Christopher M., 2017. "Lack of sleep and the development of leader-follower relationships over time," Organizational Behavior and Human Decision Processes, Elsevier, vol. 141(C), pages 57-73.
    12. Ines Villano & Marco La Marra & Girolamo Di Maio & Vincenzo Monda & Sergio Chieffi & Ezia Guatteo & Giovanni Messina & Fiorenzo Moscatelli & Marcellino Monda & Antonietta Messina, 2022. "Physiological Role of Orexinergic System for Health," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    13. Raquel Amorim & Valentín Molina-Moreno & Antonio Peña-García, 2016. "Proposal for Sustainable Dynamic Lighting in Sport Facilities to Decrease Violence among Spectators," Sustainability, MDPI, vol. 8(12), pages 1-10, December.
    14. Hengxu Liu & Shiqi Liu & Kun Wang & Tingran Zhang & Lian Yin & Jiaqi Liang & Yi Yang & Jiong Luo, 2022. "Time-Dependent Effects of Physical Activity on Cardiovascular Risk Factors in Adults: A Systematic Review," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    15. Shuzhen Niu & Xianliang Liu & Qian Wu & Jiajia Ma & Songqi Wu & Li Zeng & Yan Shi, 2023. "Sleep Quality and Cognitive Function after Stroke: The Mediating Roles of Depression and Anxiety Symptoms," IJERPH, MDPI, vol. 20(3), pages 1-11, January.
    16. Thi Phuoc Lai Nguyen & Antonio Peña-García, 2019. "Users’ Awareness, Attitudes, and Perceptions of Health Risks Associated with Excessive Lighting in Night Markets: Policy Implications for Sustainable Development," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    17. Qixin Wang & Isaac Kirubakaran Sundar & Joseph H. Lucas & Jun-Gyu Park & Aitor Nogales & Luis Martinez-Sobrido & Irfan Rahman, 2023. "Circadian clock molecule REV-ERBα regulates lung fibrotic progression through collagen stabilization," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Yasuko O. Abe & Hikari Yoshitane & Dae Wook Kim & Satoshi Kawakami & Michinori Koebis & Kazuki Nakao & Atsu Aiba & Jae Kyoung Kim & Yoshitaka Fukada, 2022. "Rhythmic transcription of Bmal1 stabilizes the circadian timekeeping system in mammals," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Seref Gul & Yasemin Kubra Akyel & Zeynep Melis Gul & Safak Isin & Onur Ozcan & Tuba Korkmaz & Saba Selvi & Ibrahim Danis & Ozgecan Savlug Ipek & Fatih Aygenli & Ali Cihan Taskin & Büşra Aytül Akarlar , 2022. "Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2455-:d:1051282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.