IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2330-d1049419.html
   My bibliography  Save this article

The Spatio-Temporal Patterns and Driving Forces of Land Use in the Context of Urbanization in China: Evidence from Nanchang City

Author

Listed:
  • Yuxi Liu

    (School of Forestry, Jiangxi Agricultural University, Nanchang 330045, China)

  • Cheng Huang

    (School of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
    Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China)

  • Lvshui Zhang

    (School of Forestry, Jiangxi Agricultural University, Nanchang 330045, China)

Abstract

Land use change has been one of the common problems in the context of urbanization in China. Social economy and land use interact with each other, and it is especially important for human society to adhere to sustainable development, and to deal with the contradictory relationship between the social–economic needs and land use change. The objectives of this study are: (1) Obtain time-series land-use classification data and its spatial distribution in Nanchang City; (2) Identify the characteristics and driving force of spatial–temporal land use changes in Nanchang City from 2000 to 2020; (3) Discuss the relationship between the urban expansion and social economy in Nanchang City. The results show that the spatial distribution of land use in Nanchang City has changed significantly from 2000 to 2020, and the largest area of land-use type in Nanchang City has been cropland. The cropland has continuously declined, and the urban area has increased significantly. A lot of cropland has been transformed into urban areas, and land use degree in Nanchang City has significantly increased. The spatial pattern of land use has greatly changed, and the city spatial pattern has become more aggregated, while the spatial distribution of cropland, forest and grassland has become more fragmented. Moreover, there has been an obvious correlation between social-economic development and the level of land use, and GDP has been the main driver of land use change. The central urban area of Nanchang city has been the main hotspot of land use change.

Suggested Citation

  • Yuxi Liu & Cheng Huang & Lvshui Zhang, 2023. "The Spatio-Temporal Patterns and Driving Forces of Land Use in the Context of Urbanization in China: Evidence from Nanchang City," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2330-:d:1049419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Quan & Wang, Haijun & Chang, Ruihan & Zeng, Haoran & Bai, Xuepiao, 2022. "Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China," Ecological Modelling, Elsevier, vol. 464(C).
    2. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    3. Wang, Szu-Hua & Huang, Shu-Li & Budd, William W., 2012. "Integrated ecosystem model for simulating land use allocation," Ecological Modelling, Elsevier, vol. 227(C), pages 46-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongwu Zhang & Liping Liu & Jinyuan Zhang, 2023. "Study on Urban Spatial Expansion and Its Scale Benefit in the Yellow River Basin," Sustainability, MDPI, vol. 15(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue Wu & Yue Yang & Weishun Xu & Qiuxiao Chen, 2020. "The Influence of Innovation Resources in Higher Education Institutions on the Development of Sci-Tech Parks’ Enterprises in the Urban Innovative Districts at the Stage of Urbanization Transformation," Land, MDPI, vol. 9(10), pages 1-36, October.
    2. Bingkui Qiu & Shasha Lu & Min Zhou & Lu Zhang & Yu Deng & Ci Song & Zuo Zhang, 2015. "A Hybrid Inexact Optimization Method for Land-Use Allocation in Association with Environmental/Ecological Requirements at a Watershed Level," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    3. Gintautas Mozgeris & Daiva Juknelienė, 2021. "Modeling Future Land Use Development: A Lithuanian Case," Land, MDPI, vol. 10(4), pages 1-21, April.
    4. Nan Cui & Chen-Chieh Feng & Rui Han & Luo Guo, 2019. "Impact of Urbanization on Ecosystem Health: A Case Study in Zhuhai, China," IJERPH, MDPI, vol. 16(23), pages 1-17, November.
    5. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    6. Jiyun Li & Yong Zhou & Qing Li & Siqi Yi & Lina Peng, 2022. "Exploring the Effects of Land Use Changes on the Landscape Pattern and Soil Erosion of Western Hubei Province from 2000 to 2020," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    7. You, L. & Li, Y.P. & Huang, G.H. & Zhang, J.L., 2014. "Modeling regional ecosystem development under uncertainty – A case study for New Binhai District of Tianjin," Ecological Modelling, Elsevier, vol. 288(C), pages 127-142.
    8. Wang, Quan & Wang, Haijun & Chang, Ruihan & Zeng, Haoran & Bai, Xuepiao, 2022. "Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China," Ecological Modelling, Elsevier, vol. 464(C).
    9. Zhang, Jianjun & Fu, Meichen & Zhang, Zhongya & Tao, Jin & Fu, Wei, 2014. "A trade-off approach of optimal land allocation between socio-economic development and ecological stability," Ecological Modelling, Elsevier, vol. 272(C), pages 175-187.
    10. Yao Lu & Min Zhou & Guoliang Ou & Zuo Zhang & Li He & Yuxiang Ma & Chaonan Ma & Jiating Tu & Siqi Li, 2021. "Sustainable Land-Use Allocation Model at a Watershed Level under Uncertainty," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    11. Lesong Zhao & Guangsheng Liu & Chunlong Xian & Jiaqi Nie & Yao Xiao & Zhigang Zhou & Xiting Li & Hongmei Wang, 2022. "Simulation of Land Use Pattern Based on Land Ecological Security: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 19(15), pages 1-20, July.
    12. Sajith, Gouri & Srinivas, Rallapalli & Golberg, Alexander & Magner, Joe, 2022. "Bio-inspired and artificial intelligence enabled hydro-economic model for diversified agricultural management," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2014. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 288(C), pages 195-202.
    14. Xiufeng Cao & Zhaoshun Liu & Shujie Li & Zhenjun Gao, 2022. "Integrating the Ecological Security Pattern and the PLUS Model to Assess the Effects of Regional Ecological Restoration: A Case Study of Hefei City, Anhui Province," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    15. Erqi Xu & Hongqi Zhang & Yang Yang & Ying Zhang, 2014. "Integrating a Spatially Explicit Tradeoff Analysis for Sustainable Land Use Optimal Allocation," Sustainability, MDPI, vol. 6(12), pages 1-22, December.
    16. Yecheng He & Weicheng Wu & Xinyuan Xie & Xinxin Ke & Yifei Song & Cuimin Zhou & Wenjing Li & Yuan Li & Rong Jing & Peixia Song & Linqian Fu & Chunlian Mao & Meng Xie & Sicheng Li & Aohui Li & Xiaoping, 2023. "Land Use/Cover Change Prediction Based on a New Hybrid Logistic-Multicriteria Evaluation-Cellular Automata-Markov Model Taking Hefei, China as an Example," Land, MDPI, vol. 12(10), pages 1-27, October.
    17. Yue Zhang & Yaqiang Dai & Yuanyuan Chen & Xinli Ke, 2022. "Coupling Coordination Development of New-Type Urbanization and Cultivated Land Low-Carbon Utilization in the Yangtze River Delta, China," Land, MDPI, vol. 11(6), pages 1-24, June.
    18. Xuechao Xia & Hui Sun & Zedong Yang & Weipeng Yuan & Dianyuan Ma, 2022. "Decoupling Analysis of Rural Population Change and Rural Electricity Consumption Change in China," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    19. Yue Wu & Zexu Han & Auwalu Faisal Koko & Siyuan Zhang & Nan Ding & Jiayang Luo, 2022. "Analyzing the Spatio-Temporal Dynamics of Urban Land Use Expansion and Its Influencing Factors in Zhejiang Province, China," IJERPH, MDPI, vol. 19(24), pages 1-24, December.
    20. Chang, Yu-Tsun & Lee, Ying-Chieh & Huang, Shu-Li, 2017. "Integrated spatial ecosystem model for simulating land use change and assessing vulnerability to flooding," Ecological Modelling, Elsevier, vol. 362(C), pages 87-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2330-:d:1049419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.