IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2283-d1048359.html
   My bibliography  Save this article

Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1

Author

Listed:
  • Dhvani H. Kuntawala

    (Medical Sciences Department, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-183 Aveiro, Portugal)

  • Filipa Martins

    (Medical Sciences Department, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-183 Aveiro, Portugal)

  • Rui Vitorino

    (Medical Sciences Department, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-183 Aveiro, Portugal)

  • Sandra Rebelo

    (Medical Sciences Department, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-183 Aveiro, Portugal)

Abstract

Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3′ untranslated region of the myotonic dystrophy protein kinase ( DMPK ) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA , ROCK1 , ROCK2, DAG, ACTA, ID1, ID2 MYOD , and MYOG . Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.

Suggested Citation

  • Dhvani H. Kuntawala & Filipa Martins & Rui Vitorino & Sandra Rebelo, 2023. "Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1," IJERPH, MDPI, vol. 20(3), pages 1-32, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2283-:d:1048359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    2. Tiago Mateus & Filipa Martins & Alexandra Nunes & Maria Teresa Herdeiro & Sandra Rebelo, 2021. "Metabolic Alterations in Myotonic Dystrophy Type 1 and Their Correlation with Lipin," IJERPH, MDPI, vol. 18(4), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    2. Yingjin Song & Ruiyi Li & Guanyi Chen & Beibei Yan & Lei Zhong & Yuxin Wang & Yihang Li & Jinlei Li & Yingxiu Zhang, 2021. "Bibliometric Analysis of Current Status on Bioremediation of Petroleum Contaminated Soils during 2000–2019," IJERPH, MDPI, vol. 18(16), pages 1-20, August.
    3. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    4. Niccolò Comerio & Fernanda Strozzi, 2019. "Tourism and its economic impact: A literature review using bibliometric tools," Tourism Economics, , vol. 25(1), pages 109-131, February.
    5. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Romero-Castro, Noelia María & Pérez-Pico, Ada María, 2020. "Innovation, entrepreneurship and knowledge in the business scientific field: Mapping the research front," Journal of Business Research, Elsevier, vol. 115(C), pages 475-485.
    6. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Shaping the Knowledge Base of Bioeconomy Sectors Development in Latin American and Caribbean Countries: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    7. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    8. Urša Golob & Mark A. P. Davies & Joachim Kernstock & Shaun M. Powell, 2020. "Trending topics plus future challenges and opportunities in brand management," Journal of Brand Management, Palgrave Macmillan, vol. 27(2), pages 123-129, March.
    9. Natalya Ivanova & Ekaterina Zolotova, 2023. "Landolt Indicator Values in Modern Research: A Review," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    10. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    11. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    12. J. Gómez-Verjan & I. Gonzalez-Sanchez & E. Estrella-Parra & R. Reyes-Chilpa, 2015. "Trends in the chemical and pharmacological research on the tropical trees Calophyllum brasiliense and Calophyllum inophyllum, a global context," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1019-1030, November.
    13. Luis Araya-Castillo & Felipe Hernández-Perlines & Hugo Moraga & Antonio Ariza-Montes, 2021. "Scientometric Analysis of Research on Socioemotional Wealth," Sustainability, MDPI, vol. 13(7), pages 1-26, March.
    14. Juan F. Prados-Castillo & Miguel Ángel Solano-Sánchez & Pilar Guaita Fernández & José Manuel Guaita Martínez, 2023. "Potential of the Crypto Economy in Financial Management and Fundraising for Tourism," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    15. Loet Leydesdorff & Dieter Franz Kogler & Bowen Yan, 2017. "Mapping patent classifications: portfolio and statistical analysis, and the comparison of strengths and weaknesses," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1573-1591, September.
    16. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    17. Tuba Bircan & Almila Alkim Akdag Salah, 2022. "A Bibliometric Analysis of the Use of Artificial Intelligence Technologies for Social Sciences," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    18. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Shiji Chen & Clément Arsenault & Yves Gingras & Vincent Larivière, 2015. "Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1307-1323, February.
    20. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2283-:d:1048359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.