IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i7p3910-d779677.html
   My bibliography  Save this article

Dengue Fever in Mainland China, 2005–2020: A Descriptive Analysis of Dengue Cases and Aedes Data

Author

Listed:
  • Yujuan Yue

    (State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
    Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, Beijing 102206, China)

  • Qiyong Liu

    (State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China)

  • Xiaobo Liu

    (State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China)

  • Ning Zhao

    (State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China)

  • Wenwu Yin

    (Division of Infectious Disease Management, Chinese Center for Disease Control and Prevention, Beijing 102206, China)

Abstract

Dengue fever occurs throughout mainland China, except in the Tibet Autonomous Region. During 2005–2020, there were 12,701 imported cases and 81,653 indigenous cases recorded. The indigenous cases were mainly clustered in Guangdong (74.0%) and Yunnan provinces (13.7%). Indigenous dengue fever is a seasonal illness in mainland China, manifesting predominantly in summer and autumn. Indigenous dengue fever cases tend to peak every 5years and have shown a substantial increase during the period 2005–2020. During the study period, indigenous dengue fever occurred more than ten times in each of the seven counties of Guangdong Province. Indigenous dengue fever has spread from low to high latitudes; that is, from the southwestern, southern, and southeastern areas to the central and northern regions, and from border ports and cities to rural areas. Aedes aegypti has become widespread in Yunnan Province but has diminished in Guangxi, Guangdong, and Hainan provinces in recent years. Aedes albopictus is distributed throughout mainland China, spanning 25 provinces and municipalities. To maintain effective public health prevention and control, it is important to monitor dengue occurrence, provide dengue classification guidance, and ensure sustainable vector management of Aedes .

Suggested Citation

  • Yujuan Yue & Qiyong Liu & Xiaobo Liu & Ning Zhao & Wenwu Yin, 2022. "Dengue Fever in Mainland China, 2005–2020: A Descriptive Analysis of Dengue Cases and Aedes Data," IJERPH, MDPI, vol. 19(7), pages 1-13, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:3910-:d:779677
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/7/3910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/7/3910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Shaowei Sang & Shaohua Gu & Peng Bi & Weizhong Yang & Zhicong Yang & Lei Xu & Jun Yang & Xiaobo Liu & Tong Jiang & Haixia Wu & Cordia Chu & Qiyong Liu, 2015. "Predicting Unprecedented Dengue Outbreak Using Imported Cases and Climatic Factors in Guangzhou, 2014," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    2. Yujuan Yue & Qiyong Liu, 2019. "Exploring Epidemiological Characteristics of Domestic Imported Dengue Fever in Mainland China, 2014–2018," IJERPH, MDPI, vol. 16(20), pages 1-10, October.
    3. Yujuan Yue & Xiaobo Liu & Dongsheng Ren & Haixia Wu & Qiyong Liu, 2021. "Spatial Dynamics of Dengue Fever in Mainland China, 2019," IJERPH, MDPI, vol. 18(6), pages 1-12, March.
    4. Dan Liu & Songjing Guo & Mingjun Zou & Cong Chen & Fei Deng & Zhong Xie & Sheng Hu & Liang Wu, 2019. "A dengue fever predicting model based on Baidu search index data and climate data in South China," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-16, December.
    5. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    6. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    9. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    10. Elorm Donkor & Matthew Kelly & Cecilia Eliason & Charles Amotoh & Darren J. Gray & Archie C. A. Clements & Kinley Wangdi, 2021. "A Bayesian Spatio-Temporal Analysis of Malaria in the Greater Accra Region of Ghana from 2015 to 2019," IJERPH, MDPI, vol. 18(11), pages 1-15, June.
    11. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    12. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    13. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    14. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    15. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    16. Adriana Zubieta-Zavala & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & Luis García-Valladares & Malaquias López-Cervantes & Juan Guillermo López Yescas & Luis Durán-Arenas, 2016. "Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(8), pages 1-14, August.
    17. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    18. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    19. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    20. Mohd Hanief Ahmad & Mohd Ismail Ibrahim & Zeehaida Mohamed & Nabilah Ismail & Muhammad Amiruddin Abdullah & Rafidah Hanim Shueb & Mohd Nazri Shafei, 2018. "The Sensitivity, Specificity and Accuracy of Warning Signs in Predicting Severe Dengue, the Severe Dengue Prevalence and Its Associated Factors," IJERPH, MDPI, vol. 15(9), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:3910-:d:779677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.