IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p2771-d760055.html
   My bibliography  Save this article

Analysis of Drought and Flood Variations on a 200-Year Scale Based on Historical Environmental Information in Western China

Author

Listed:
  • Yinge Liu

    (Key Laboratory of Disaster Monitoring and Mechanism Simulating in Shaanxi Province, College of Geography and Environment, Baoji University of Arts and Sciences, Baoji 721013, China)

  • Yanjun Wen

    (Key Laboratory of Disaster Monitoring and Mechanism Simulating in Shaanxi Province, College of Geography and Environment, Baoji University of Arts and Sciences, Baoji 721013, China)

  • Yaqian Zhao

    (Institute of Water Resources and Hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China
    UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland)

  • Haonan Hu

    (Key Laboratory of Disaster Monitoring and Mechanism Simulating in Shaanxi Province, College of Geography and Environment, Baoji University of Arts and Sciences, Baoji 721013, China)

Abstract

Historical environmental evidence has been characterized by time accuracy, high spatial resolution and rich information, which may be widely used in the reconstruction of historical data series. Taking the upper reaches of the Weihe River as an example in Western China, the grades and index sequences of the drought and flood disasters from 1800 to 2016 were reconstructed based on various historical environmental information and standardized precipitation indicator (SPI). Moreover, the characteristics of droughts and floods were analyzed using statistical diagnostic methods, and the mechanisms affecting centennial-scale droughts and floods were discussed. The validity of reconstruction sequence of droughts/floods was verified, which showed that the reconstruction sequence may reasonably indicate the status of drought and flood. The reconstruction indicated the following periods of drought/flood: a period of extreme and big droughts in 1835s–1893s, 1924s–1943s and 1984s–2008s, a period of extreme and big floods in 1903s–1923s, and a period of extreme and big droughts/floods in 1944s–1983s. Moreover, the droughts were more serious in the western part of this region and the floods were relatively severe in the east of this region, while the droughts and floods have long-term period of about 100 years and mutation. The influence mechanism of external environmental forcing factors driving floods/droughts were revealed. The results showed that the cycle of El Niño Southern Oscillation (ENSO) and sunspot activities were closely related to the variations of drought/flood, meanwhile, ENSO has a significant lag time scale cumulative influence on droughts and floods, especially the 15-year sliding effect was the most obvious. In the peak year of sunspots, the probability of heavy drought/extreme floods was large, and the 102-year sunspot cycle has a more significant effect on drought and flood disasters. The mutation of droughts and floods occurred in the context of the drastic changes in the ground environment, and transformation of precipitation and land use structure. These results will enhance the understandings of historical environmental climate characteristics and mechanisms over the hundred years, and be useful for the future regional water resources and assessment, and ecological environment management.

Suggested Citation

  • Yinge Liu & Yanjun Wen & Yaqian Zhao & Haonan Hu, 2022. "Analysis of Drought and Flood Variations on a 200-Year Scale Based on Historical Environmental Information in Western China," IJERPH, MDPI, vol. 19(5), pages 1-16, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2771-:d:760055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/2771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/2771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang Yi & Hongjun Yu & Junyi Ge & Zhongping Lai & Xingyong Xu & Li Qin & Shuzhen Peng, 2012. "Reconstructions of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records," Climatic Change, Springer, vol. 110(1), pages 469-498, January.
    2. Yinge Liu & Keke Yu & Yaqian Zhao & Jiangchuan Bao, 2022. "Impacts of Climatic Variation and Human Activity on Runoff in Western China," Sustainability, MDPI, vol. 14(2), pages 1-19, January.
    3. Kerstin S. Treydte & Gerhard H. Schleser & Gerhard Helle & David C. Frank & Matthias Winiger & Gerald H. Haug & Jan Esper, 2006. "The twentieth century was the wettest period in northern Pakistan over the past millennium," Nature, Nature, vol. 440(7088), pages 1179-1182, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kennedy Ndue & Melese Mulu Baylie & Pál Goda, 2023. "Determinants of Rural Households’ Intensity of Flood Adaptation in the Fogera Rice Plain, Ethiopia: Evidence from Generalised Poisson Regression," Sustainability, MDPI, vol. 15(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengxin Bai & Jingyun Zheng & Zhixin Hao & Xuezhen Zhang & Gang Zeng, 2019. "Hydroclimate patterns over the Northern Hemisphere when megadroughts occurred in North China during the last millennium," Climatic Change, Springer, vol. 157(3), pages 365-385, December.
    2. Liang Yi & Hongjun Yu & Junyi Ge & Zhongping Lai & Xingyong Xu & Li Qin & Shuzhen Peng, 2012. "Reconstructions of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records," Climatic Change, Springer, vol. 110(1), pages 469-498, January.
    3. Islam, Md. Nazrul & Kitazawa, Daisuke & Kokuryo, Naoki & Tabeta, Shigeru & Honma, Takamitsu & Komatsu, Nobuyuki, 2012. "Numerical modeling on transition of dominant algae in Lake Kitaura, Japan," Ecological Modelling, Elsevier, vol. 242(C), pages 146-163.
    4. Zhenju Chen & Xingyuan He & Nicole K. Davi & Xianliang Zhang, 2016. "A 258-year reconstruction of precipitation for southern Northeast China and the northern Korean peninsula," Climatic Change, Springer, vol. 139(3), pages 609-622, December.
    5. Wanru Ba & Haitao Qiu & Yonggang Cao & Adu Gong, 2023. "Spatiotemporal Characteristics Prediction and Driving Factors Analysis of NPP in Shanxi Province Covering the Period 2001–2020," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    6. Xichen Che & Liang Jiao & Huijun Qin & Jingjing Wu, 2022. "Impacts of Climate and Land Use/Cover Change on Water Yield Services in the Upper Yellow River Basin in Maqu County," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    7. Luo Qin & Guangxin Liu & Xiangzhong Li & E. Chongyi & Jiang Li & Changrun Wu & Xin Guan & Yuan Wang, 2023. "A 1000-year hydroclimate record from the Asian summer monsoon-Westerlies transition zone in the northeastern Qinghai-Tibetan Plateau," Climatic Change, Springer, vol. 176(3), pages 1-18, March.
    8. Xianliang Zhang & Xueping Bai & Meiting Hou & Yongxing Chang & Zhenju Chen, 2018. "Reconstruction of the regional summer ground surface temperature in the permafrost region of Northeast China from 1587 to 2008," Climatic Change, Springer, vol. 148(4), pages 519-531, June.
    9. Olivier Damette & Stephane Goutte & Qing Pei, 2020. "Climate and nomadic migration in a nonlinear world: evidence of the historical China," Climatic Change, Springer, vol. 163(4), pages 2055-2071, December.
    10. Jan Altman & Kerstin Treydte & Vit Pejcha & Tomas Cerny & Petr Petrik & Miroslav Srutek & Jong-Suk Song & Valerie Trouet & Jiri Dolezal, 2020. "Tree growth response to recent warming of two endemic species in Northeast Asia," Climatic Change, Springer, vol. 162(3), pages 1345-1364, October.
    11. Zahid Rauf & Adam Khan & Samina Siddiqui & Sidra Saleem & Tahir Iqbal & Safdar Ali Shah & Nowsherwan Zarif & Wahiba Iqbal, 2022. "Radial growth, present status and future prospects of west Himalayan fir (Abies pindrow Royle) growing in the moist temperate forest of Himalayan mountains of Pakistan," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 68(9), pages 344-356.
    12. Feng Chen & Hadad Martín & Xiaoen Zhao & Fidel Roig & Heli Zhang & Shijie Wang & Weipeng Yue & Youping Chen, 2022. "Abnormally low precipitation-induced ecological imbalance contributed to the fall of the Ming Dynasty: new evidence from tree rings," Climatic Change, Springer, vol. 173(1), pages 1-16, July.
    13. Pei, Qing & Zhang, David D. & Li, Guodong & Winterhalder, Bruce & Lee, Harry F., 2015. "Epidemics in Ming and Qing China: Impacts of changes of climate and economic well-being," Social Science & Medicine, Elsevier, vol. 136, pages 73-80.
    14. Zong-Shan Li & Qi-Bin Zhang & Keping Ma, 2012. "Tree-ring reconstruction of summer temperature for A.D. 1475–2003 in the central Hengduan Mountains, Northwestern Yunnan, China," Climatic Change, Springer, vol. 110(1), pages 455-467, January.
    15. Olivier Damette & Stephane Goutte & Qing Pei, 2020. "Climate and nomadic migration in a nonlinear world: evidence of the historical China," Climatic Change, Springer, vol. 163(4), pages 2055-2071, December.
    16. Olivier DAMETTE & Qing PEI, 2020. "Changement climatique et migrations : un nouveau regard à travers les migrations nomades dans la Chine historique," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 51, pages 17-30.
    17. Yajuan Wang & Yongheng Rao & Hongbo Zhu, 2022. "Revealing the Impact of Protected Areas on Land Cover Volatility in China," Land, MDPI, vol. 11(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2771-:d:760055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.