IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p14863-d970189.html
   My bibliography  Save this article

A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement

Author

Listed:
  • Abdalrhman Milad

    (Department of Civil and Environmental Engineering, College of Engineering, University of Nizwa, P.O. Box 33, Nizwa PC 616, Ad-Dakhliyah, Oman)

  • Ali Mohammed Babalghaith

    (Centre for Transportation Research, Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Abdulnaser M. Al-Sabaeei

    (Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia)

  • Anmar Dulaimi

    (College of Engineering, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
    School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 5UX, UK)

  • Abdualmtalab Ali

    (Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada)

  • Sajjala Sreedhar Reddy

    (Department of Civil and Environmental Engineering, College of Engineering, University of Nizwa, P.O. Box 33, Nizwa PC 616, Ad-Dakhliyah, Oman)

  • Munder Bilema

    (Department of Civil Technology, College of Science Technology-Qaminis, Qaminis, Libya)

  • Nur Izzi Md Yusoff

    (Department of Civil Engineering, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia)

Abstract

The environmental concerns of global warming and energy consumption are among the most severe issues and challenges facing human beings worldwide. Due to the relatively higher predicted temperatures (150–180 °C), the latest research on pavement energy consumption and carbon dioxide (CO 2 ) emission assessment mentioned contributing to higher environmental burdens such as air pollution and global warming. However, warm-mix asphalt (WMA) was introduced by pavement researchers and the road construction industry instead of hot-mix asphalt (HMA) to reduce these environmental problems. This study aims to provide a comparative overview of WMA and HMA from environmental and economic perspectives in order to highlight the challenges, motivations, and research gaps in using WMA technology compared to HMA. It was discovered that the lower production temperature of WMA could significantly reduce the emissions of gases and fumes and thus reduce global warming. The lower production temperature also provides a healthy work environment and reduces exposure to fumes. Replacing HMA with WMA can reduce production costs because of the 20–75% lower energy consumption in WMA production. It was also released that the reduction in energy consumption is dependent on the fuel type, energy source, material heat capacity, moisture content, and production temperature. Other benefits of using WMA are enhanced asphalt mixture workability and compaction because the additives in WMA reduce asphalt binder viscosity. It also allows for the incorporation of more waste materials, such as reclaimed asphalt pavement (RAP). However, future studies are recommended on the possibility of using renewable, environmentally friendly, and cost-effective materials such as biomaterials as an alternative to conventional WMA-additives for more sustainable and green asphalt pavements.

Suggested Citation

  • Abdalrhman Milad & Ali Mohammed Babalghaith & Abdulnaser M. Al-Sabaeei & Anmar Dulaimi & Abdualmtalab Ali & Sajjala Sreedhar Reddy & Munder Bilema & Nur Izzi Md Yusoff, 2022. "A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement," IJERPH, MDPI, vol. 19(22), pages 1-23, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:14863-:d:970189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/14863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/14863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng Ma & Aimin Sha & Ruiyu Lin & Yue Huang & Chao Wang, 2016. "Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China," IJERPH, MDPI, vol. 13(3), pages 1-15, March.
    2. Julide Oner & Burak Sengoz, 2015. "Utilization of Recycled Asphalt Concrete with Warm Mix Asphalt and Cost-Benefit Analysis," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-18, January.
    3. Feng Ma & Aimin Sha & Panpan Yang & Yue Huang, 2016. "The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China," IJERPH, MDPI, vol. 13(7), pages 1-12, June.
    4. Mulian Zheng & Wang Chen & Xiaoyan Ding & Wenwu Zhang & Sixin Yu, 2021. "Comprehensive Life Cycle Environmental Assessment of Preventive Maintenance Techniques for Asphalt Pavement," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    5. Harvey, John & Kendall, Alissa & Saboori, Arash, 2015. "The Role of Life Cycle Assessment in Reducing Greenhouse Gas Emissions from Road Construction and Maintenance," Institute of Transportation Studies, Working Paper Series qt89w5g2h6, Institute of Transportation Studies, UC Davis.
    6. Alejandra T. Calabi-Floody & Gonzalo A. Valdés-Vidal & Elsa Sanchez-Alonso & Luis A. Mardones-Parra, 2020. "Evaluation of Gas Emissions, Energy Consumption and Production Costs of Warm Mix Asphalt (WMA) Involving Natural Zeolite and Reclaimed Asphalt Pavement (RAP)," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    7. Sharma, Ajit & Lee, Byeong-Kyu, 2017. "Energy savings and reduction of CO2 emission using Ca(OH)2 incorporated zeolite as an additive for warm and hot mix asphalt production," Energy, Elsevier, vol. 136(C), pages 142-150.
    8. Husnain Haider & Sulaiman Yousef AlMarshod & Saleem S. AlSaleem & Ahmed AbdelMonteleb M. Ali & Majed Alinizzi & Mohammad T. Alresheedi & Md. Shafiquzzaman, 2022. "Life Cycle Assessment of Construction and Demolition Waste Management in Riyadh, Saudi Arabia," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    9. Abdalrhman Milad & Ahmed Suliman B. Ali & Ali Mohammed Babalghaith & Zubair Ahmed Memon & Nuha S. Mashaan & Salaheddin Arafa & Nur Izzi Md. Yusoff, 2021. "Utilisation of Waste-Based Geopolymer in Asphalt Pavement Modification and Construction—A Review," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    10. Filippo G. Praticò & Marinella Giunta & Marina Mistretta & Teresa Maria Gulotta, 2020. "Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    11. Harvey, John & Kendall, Alissa & Saboori, Arash, 2015. "The Role of Life Cycle Assessment in Reducing GHG Emissions from Road Construction and Maintenance," Institute of Transportation Studies, Working Paper Series qt9071w0vm, Institute of Transportation Studies, UC Davis.
    12. Giuseppe Sollazzo & Sonia Longo & Maurizio Cellura & Clara Celauro, 2020. "Impact Analysis Using Life Cycle Assessment of Asphalt Production from Primary Data," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael R. Gruber & Bernhard Hofko, 2023. "Life Cycle Assessment of Greenhouse Gas Emissions from Recycled Asphalt Pavement Production," Sustainability, MDPI, vol. 15(5), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiran Sapkota & Ehsan Yaghoubi & P. L. P. Wasantha & Rudi Van Staden & Sam Fragomeni, 2023. "Mechanical Characteristics and Durability of HMA Made of Recycled Aggregates," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    2. Anda Ligia Belc & Adrian Ciutina & Raluca Buzatu & Florin Belc & Ciprian Costescu, 2021. "Environmental Impact Assessment of Different Warm Mix Asphalts," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    3. Mulian Zheng & Wang Chen & Xiaoyan Ding & Wenwu Zhang & Sixin Yu, 2021. "Comprehensive Life Cycle Environmental Assessment of Preventive Maintenance Techniques for Asphalt Pavement," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    4. Harvey, John T. & Kendall, Alissa & Saboori, Arash & Ostovar, Maryam & Butt, Ali A. & Hernandez, Jesus & Haynes, Bruce, 2018. "Framework for Life Cycle Assessment of Complete Streets Projects," Institute of Transportation Studies, Working Paper Series qt0vw335dp, Institute of Transportation Studies, UC Davis.
    5. Angie Ruiz & Jose Guevara, 2020. "Sustainable Decision-Making in Road Development: Analysis of Road Preservation Policies," Sustainability, MDPI, vol. 12(3), pages 1-25, January.
    6. Hayder Abbas Obaid & Tameem Mohammed Hashim & Ahmed Awad Matr Al-Abody & Mohammed Salah Nasr & Ghadeer Haider Abbas & Abdullah Musa Kadhim & Monower Sadique, 2022. "Properties of Modified Warm-Mix Asphalt Mixtures Containing Different Percentages of Reclaimed Asphalt Pavement," Energies, MDPI, vol. 15(20), pages 1-29, October.
    7. Fuyi Yao & Guiwen Liu & Yingbo Ji & Wenjing Tong & Xiaoyun Du & Kaijian Li & Asheem Shrestha & Igor Martek, 2020. "Evaluating the Environmental Impact of Construction within the Industrialized Building Process: A Monetization and Building Information Modelling Approach," IJERPH, MDPI, vol. 17(22), pages 1-22, November.
    8. Nicola Baldo & Matteo Miani & Fabio Rondinella & Clara Celauro, 2021. "A Machine Learning Approach to Determine Airport Asphalt Concrete Layer Moduli Using Heavy Weight Deflectometer Data," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    9. Giusi Perri & Manuel De Rose & Josipa Domitrović & Rosolino Vaiana, 2023. "CO 2 Impact Analysis for Road Embankment Construction: Comparison of Lignin and Lime Soil Stabilization Treatments," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    10. Diana Eliza Godoi Bizarro & Zoran Steinmann & Isabel Nieuwenhuijse & Elisabeth Keijzer & Mara Hauck, 2021. "Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    11. Michael R. Gruber & Bernhard Hofko, 2023. "Life Cycle Assessment of Greenhouse Gas Emissions from Recycled Asphalt Pavement Production," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    12. Elsa Sanchez-Alonso & Gonzalo Valdes-Vidal & Alejandra Calabi-Floody, 2020. "Experimental Study to Design Warm Mix Asphalts and Recycled Warm Mix Asphalts Using Natural Zeolite as Additive for Sustainable Pavements," Sustainability, MDPI, vol. 12(3), pages 1-13, January.
    13. Giovanni Leonardi & Federica Suraci, 2022. "A 3D-FE Model for the Rutting Prediction in Geogrid Reinforced Flexible Pavements," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    14. Bojan Matić & Stanislav Jovanović & Milan Marinković & Siniša Sremac & Dillip Kumar Das & Željko Stević, 2021. "A Novel Integrated Interval Rough MCDM Model for Ranking and Selection of Asphalt Production Plants," Mathematics, MDPI, vol. 9(3), pages 1-20, January.
    15. Fang, Zigeng & Yan, Jiayi & Lu, Qiuchen & Chen, Long & Yang, Pu & Tang, Junqing & Jiang, Feng & Broyd, Tim & Hong, Jingke, 2023. "A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects," Applied Energy, Elsevier, vol. 335(C).
    16. Clara Celauro & Andrea Cardella & Marco Guerrieri, 2023. "LCA of Different Construction Choices for a Double-Track Railway Line for Sustainability Evaluations," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    17. Wisanukhorn Samingthong & Menglim Hoy & Bundam Ro & Suksun Horpibulsuk & Thanongsak Yosthasaen & Apichat Suddeepong & Apinun Buritatum & Teerasak Yaowarat & Arul Arulrajah, 2023. "Natural Rubber Latex-Modified Concrete with PET and Crumb Rubber Aggregate Replacements for Sustainable Rigid Pavements," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    18. Mohamed Ezzat Al-Atroush & Jumana Almushcab & Duha Alhudaif & Yosra Meskinyar, 2023. "Exploring the Potential of 3D Printing Technology for Sustainable Plastic Roads: A Preliminary Investigation," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
    19. Feng Ma & Aimin Sha & Panpan Yang & Yue Huang, 2016. "The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China," IJERPH, MDPI, vol. 13(7), pages 1-12, June.
    20. Bo Peng & Xiaoying Tong & Shijiang Cao & Wenying Li & Gui Xu, 2020. "Carbon Emission Calculation Method and Low-Carbon Technology for Use in Expressway Construction," Sustainability, MDPI, vol. 12(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:14863-:d:970189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.