IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14289-d960194.html
   My bibliography  Save this article

Multi-Scenario Simulation of Land Use and Landscape Ecological Risk Response Based on Planning Control

Author

Listed:
  • Nan Wang

    (School of Geographical Sciences, Hunan Normal University, Changsha 410081, China
    Hunan Key Laboratory of Land and Resources Evaluation and Utilization, Changsha 410007, China)

  • Peijuan Zhu

    (School of Geographical Sciences, Hunan Normal University, Changsha 410081, China
    Hunan Key Laboratory of Geospatial Big Data Mining and Application, Hunan Provincial Normal University, Changsha 410081, China)

  • Guohua Zhou

    (School of Geographical Sciences, Hunan Normal University, Changsha 410081, China
    Hunan Key Laboratory of Geospatial Big Data Mining and Application, Hunan Provincial Normal University, Changsha 410081, China)

  • Xudong Xing

    (Hunan Key Laboratory of Land and Resources Evaluation and Utilization, Changsha 410007, China)

  • Yong Zhang

    (Hunan Sidayuan Planning Consulting Research Co., Ltd., Changsha 410081, China)

Abstract

This study applied territorial spatial planning control to a land use multi-scenario simulation in Changde, China, and measured the landscape ecological risk response. It embedded five planning control schemes, respectively, involving inertial development, urban expansion size quantity control, ecological spatial structure control, land use zoning control, and comprehensive control. Findings show that: (1) Woodland and arable land in Changde occupy 31.10% and 43.35% of land use, respectively, and constitute the main functional space of the research area. The scale of construction land in Changde has enlarged continuously, with ecological space represented by woodland and water constantly squeezed and occupied. (2) Comprehensive control has the most remarkable restraining effect on the disordered spread of construction land, while ecological space structure control is the most effective way to control ecological land shrinkage. (3) The overall landscape ecological risk index expanded over 2009–2018, presenting an S-type time evolution curve of “sharp increase–mitigation”. Landscape ecological risk presents a single-core, double-layer circle structure with the north and east regions as the core, attenuating to the periphery. (4) Landscape ecological risk under land use zoning control increased significantly more than in other scenarios. Comprehensive control best prevented landscape ecological risk and restrained the disorderly expansion of construction land.

Suggested Citation

  • Nan Wang & Peijuan Zhu & Guohua Zhou & Xudong Xing & Yong Zhang, 2022. "Multi-Scenario Simulation of Land Use and Landscape Ecological Risk Response Based on Planning Control," IJERPH, MDPI, vol. 19(21), pages 1-29, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14289-:d:960194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanping Yang & Jianjun Chen & Yanping Lan & Guoqing Zhou & Haotian You & Xiaowen Han & Yu Wang & Xue Shi, 2022. "Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    2. Nianlong Han & Miao Yu & Peihong Jia, 2022. "Multi-Scenario Landscape Ecological Risk Simulation for Sustainable Development Goals: A Case Study on the Central Mountainous Area of Hainan Island," IJERPH, MDPI, vol. 19(7), pages 1-17, March.
    3. Wafaa Majeed Mutashar Al-Hameedi & Jie Chen & Cheechouyang Faichia & Biswajit Nath & Bazel Al-Shaibah & Ali Al-Aizari, 2022. "Geospatial Analysis of Land Use/Cover Change and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and ANN Models," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
    4. Chunfen Zeng & Jun He & Qingqing He & Yuqing Mao & Boya Yu, 2022. "Assessment of Land Use Pattern and Landscape Ecological Risk in the Chengdu-Chongqing Economic Circle, Southwestern China," Land, MDPI, vol. 11(5), pages 1-17, April.
    5. Hui Xiang & Yinhua Ma & Rongrong Zhang & Hongji Chen & Qingyuan Yang, 2022. "Spatio-Temporal Evolution and Future Simulation of Agricultural Land Use in Xiangxi, Central China," Land, MDPI, vol. 11(4), pages 1-16, April.
    6. Dang, Anh Nguyet & Kawasaki, Akiyuki, 2017. "Integrating biophysical and socio-economic factors for land-use and land-cover change projection in agricultural economic regions," Ecological Modelling, Elsevier, vol. 344(C), pages 29-37.
    7. Penghui Jiang & Qianwen Cheng & Yuan Gong & Liyan Wang & Yunqian Zhang & Liang Cheng & Manchun Li & Jiancheng Lu & Yuewei Duan & Qiuhao Huang & Dong Chen, 2016. "Using Urban Development Boundaries to Constrain Uncontrolled Urban Sprawl in China," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(6), pages 1321-1343, November.
    8. Anh Nguyet Dang & Akiyuki Kawasaki, 2016. "A Review of Methodological Integration in Land-Use Change Models," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 7(2), pages 1-25, April.
    9. Charlotte Shade & Peleg Kremer, 2019. "Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies," Land, MDPI, vol. 8(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wancong Li & Hong Li & Feilong Hao & Zhiqiang Feng & Shijun Wang, 2024. "A Simulation of the Spatial Expansion Process of Shrinking Cities Based on the Concept of Smart Shrinkage: A Case Study of the City of Baishan," Land, MDPI, vol. 13(2), pages 1-21, February.
    2. Xiangjuan Zhao & Hanxuan Zhang & Jun Ren & Jing Guo & Quanxi Wang & Chengying Li, 2023. "City Health Examination and Evaluation of Territory Spatial Planning for SDG11 in China: A Case Study of Xining City in Qinghai Province," IJERPH, MDPI, vol. 20(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiming Wang & Kun Yang & Lixiao Li & Yanhui Zhu, 2022. "Assessing the Terrain Gradient Effect of Landscape Ecological Risk in the Dianchi Lake Basin of China Using Geo-Information Tupu Method," IJERPH, MDPI, vol. 19(15), pages 1-19, August.
    2. Fanqi Meng & Li Dong & Yu Zhang, 2023. "Spatiotemporal Dynamic Analysis and Simulation Prediction of Land Use and Landscape Patterns from the Perspective of Sustainable Development in Tourist Cities," Sustainability, MDPI, vol. 15(19), pages 1-21, October.
    3. Pankaj Bajracharya & Selima Sultana, 2022. "Examining the Use of Urban Growth Boundary for Future Urban Expansion of Chattogram, Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    4. Tao Hong & Ningli Liang & Haomeng Li, 2023. "Study on the Spatial and Temporal Evolution Characteristics and Driving Factors of the “Production–Living–Ecological Space” in Changfeng County," Sustainability, MDPI, vol. 15(13), pages 1-15, July.
    5. Hengrui Zhang & Jianing Zhang & Zhuozhuo Lv & Linjie Yao & Ning Zhang & Qing Zhang, 2023. "Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia," Land, MDPI, vol. 12(6), pages 1-15, May.
    6. Bernard Fosu Frimpong & Frank Molkenthin, 2021. "Tracking Urban Expansion Using Random Forests for the Classification of Landsat Imagery (1986–2015) and Predicting Urban/Built-Up Areas for 2025: A Study of the Kumasi Metropolis, Ghana," Land, MDPI, vol. 10(1), pages 1-21, January.
    7. Ayanlade, Ayansina & Howard, Michael T., 2017. "Understanding changes in a Tropical Delta: A multi-method narrative of landuse/landcover change in the Niger Delta," Ecological Modelling, Elsevier, vol. 364(C), pages 53-65.
    8. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    9. Jianhui Dong & Wenju Yun & Kening Wu & Shaoshuai Li & Bingrui Liu & Qiaoyuan Lu, 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China," Land, MDPI, vol. 12(2), pages 1-22, February.
    10. Xiaoyang Liu & Weihao Shi & Sen Zhang, 2022. "Progress of Research on Urban Growth Boundary and Its Implications in Chinese Studies Based on Bibliometric Analysis," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    11. Shengqiang Yang & Donglin Li & Heping Liao & Lin Zhu & Miaomiao Zhou & Zhicong Cai, 2023. "Analysis of the Balance between Supply and Demand of Arable Land in China Based on Food Security," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    12. Noor Ul Haq & George Kontakiotis & Hammad Tariq Janjuhah & Fazlur Rahman & Iffat Tabassum & Usman Khan & Jamil Khan & Zahir Ahmad & Naveed Jamal, 2022. "Environmental Risk Assessment in the Hindu Kush Himalayan Mountains of Northern Pakistan: Palas Valley, Kohistan," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    13. Yaotao Xu & Peng Li & Jinjin Pan & Yi Zhang & Xiaohu Dang & Xiaoshu Cao & Junfang Cui & Zhi Yang, 2022. "Eco-Environmental Effects and Spatial Heterogeneity of “Production-Ecology-Living” Land Use Transformation: A Case Study for Ningxia, China," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    14. Yikun Su & Hong Xue & Huakang Liang, 2019. "An Evaluation Model for Urban Comprehensive Carrying Capacity: An Empirical Case from Harbin City," IJERPH, MDPI, vol. 16(3), pages 1-25, January.
    15. Liu, Yong & Fan, Peilei & Yue, Wenze & Song, Yan, 2018. "Impacts of land finance on urban sprawl in China: The case of Chongqing," Land Use Policy, Elsevier, vol. 72(C), pages 420-432.
    16. Brahima Coulibaly & Shixiang Li, 2020. "Impact of Agricultural Land Loss on Rural Livelihoods in Peri-Urban Areas: Empirical Evidence from Sebougou, Mali," Land, MDPI, vol. 9(12), pages 1-20, November.
    17. Yizhen Wu & Mingyue Jiang & Zhijian Chang & Yuanqing Li & Kaifang Shi, 2020. "Does China’s Urban Development Satisfy Zipf’s Law? A Multiscale Perspective from the NPP-VIIRS Nighttime Light Data," IJERPH, MDPI, vol. 17(4), pages 1-26, February.
    18. Sebastjan Lazar & Vojko Potočan & Dorota Klimecka-Tatar & Matevz Obrecht, 2022. "Boosting Sustainable Operations with Sustainable Supply Chain Modeling: A Case of Organizational Culture and Normative Commitment," IJERPH, MDPI, vol. 19(17), pages 1-23, September.
    19. Zichun Yan & Ninglong You & Lu Wang & Chengwei Lan, 2023. "Assessing the Impact of Road Network on Urban Landscape Ecological Risk Based on Corridor Cutting Degree Model in Fuzhou, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    20. Yunlin He & Yanhua Mo & Jiangming Ma, 2022. "Spatio-Temporal Evolution and Influence Mechanism of Habitat Quality in Guilin City, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14289-:d:960194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.