IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8568-d861770.html
   My bibliography  Save this article

Geospatial Analysis of Land Use/Cover Change and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and ANN Models

Author

Listed:
  • Wafaa Majeed Mutashar Al-Hameedi

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China)

  • Jie Chen

    (School of Geosciences and Info-Physics, Central South University, Changsha 410083, China)

  • Cheechouyang Faichia

    (Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China)

  • Biswajit Nath

    (Department of Geography and Environmental Studies, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh)

  • Bazel Al-Shaibah

    (Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China)

  • Ali Al-Aizari

    (Institute of Natural Disaster Research, School of Environment, Northeast Normal University, Changchun 130024, China)

Abstract

Understanding future landscape risk pattern change (FLRPC) scenarios will help people manage and utilize natural resources. In this study, we have selected a variety of landscape and anthropogenic factors as risk parameters for FLRPC assessment. Land use/cover change (LUCC) and land surface temperature (LST) are regarded as significant factors that have resulted in large-scale environmental changes. Result analysis of the previous LUCC from 1985 to 2020 showed that construction land and water body (WB) increased by 669.09 and 183.16 km 2 , respectively. The study continues to predict future LUCC from 2030 to 2050, in which the result has shown that a large land use conversion occurred during the future prediction period. In addition, the LST forecasting analysis illustrated that the previous LST maximum and minimum are 38 °C and 15 °C, which will be increased to 40.83 °C and 26.25 °C in the future, respectively. Finally, the study used the weighted overlay method for the FLRPC analysis, which applies analytic hierarchy process techniques for risk evaluation. The FLRPC result demonstrated that Baghdad City is in the low-risk and medium-risk to high-risk categories from 2020 to 2050, while AL and BL are in the very-high-risk categories. Meanwhile, WB and NG have always been safe, falling into the very-low-risk and low-risk categories from 2020 to 2050. Therefore, this study has successfully assessed the Baghdad metropolitan area and made recommendations for future urban development for a more safe, resilient, and sustainable development.

Suggested Citation

  • Wafaa Majeed Mutashar Al-Hameedi & Jie Chen & Cheechouyang Faichia & Biswajit Nath & Bazel Al-Shaibah & Ali Al-Aizari, 2022. "Geospatial Analysis of Land Use/Cover Change and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and ANN Models," Sustainability, MDPI, vol. 14(14), pages 1-31, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8568-:d:861770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bassim Mohammed Hashim & Ali Al Maliki & Maitham A. Sultan & Shamsuddin Shahid & Zaher Mundher Yaseen, 2022. "Effect of land use land cover changes on land surface temperature during 1984–2020: a case study of Baghdad city using landsat image," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1223-1246, June.
    2. Rahel Hamad & Heiko Balzter & Kamal Kolo, 2018. "Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    3. Biswajit Nath & Zheng Niu & Ramesh P. Singh, 2018. "Land Use and Land Cover Changes, and Environment and Risk Evaluation of Dujiangyan City (SW China) Using Remote Sensing and GIS Techniques," Sustainability, MDPI, vol. 10(12), pages 1-32, December.
    4. Griselda Vázquez-Quintero & Raúl Solís-Moreno & Marín Pompa-García & Federico Villarreal-Guerrero & Carmelo Pinedo-Alvarez & Alfredo Pinedo-Alvarez, 2016. "Detection and Projection of Forest Changes by Using the Markov Chain Model and Cellular Automata," Sustainability, MDPI, vol. 8(3), pages 1-13, March.
    5. Marcela Prokopová & Luca Salvati & Gianluca Egidi & Ondřej Cudlín & Renata Včeláková & Radek Plch & Pavel Cudlín, 2019. "Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    6. Di Liu & Xiaoying Liang & Hai Chen & Hang Zhang & Nanzhao Mao, 2018. "A Quantitative Assessment of Comprehensive Ecological Risk for a Loess Erosion Gully: A Case Study of Dujiashi Gully, Northern Shaanxi Province, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    7. Darvishi, Asef & Yousefi, Maryam & Marull, Joan, 2020. "Modelling landscape ecological assessments of land use and cover change scenarios. Application to the Bojnourd Metropolitan Area (NE Iran)," Land Use Policy, Elsevier, vol. 99(C).
    8. Darren How Jin Aik & Mohd Hasmadi Ismail & Farrah Melissa Muharam, 2020. "Land Use/Land Cover Changes and the Relationship with Land Surface Temperature Using Landsat and MODIS Imageries in Cameron Highlands, Malaysia," Land, MDPI, vol. 9(10), pages 1-23, October.
    9. Joel E. Cohen, 2001. "World population in 2050: assessing the projections," Conference Series ; [Proceedings], Federal Reserve Bank of Boston, vol. 46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fanqi Meng & Li Dong & Yu Zhang, 2023. "Spatiotemporal Dynamic Analysis and Simulation Prediction of Land Use and Landscape Patterns from the Perspective of Sustainable Development in Tourist Cities," Sustainability, MDPI, vol. 15(19), pages 1-21, October.
    2. Nan Wang & Peijuan Zhu & Guohua Zhou & Xudong Xing & Yong Zhang, 2022. "Multi-Scenario Simulation of Land Use and Landscape Ecological Risk Response Based on Planning Control," IJERPH, MDPI, vol. 19(21), pages 1-29, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    2. Wajeeh Mustafa Sarsour & Shamsul Rijal Muhammad Sabri, 2020. "A Simulation Study: Obtaining a Sufficient Sample Size of Discrete-Time Markov Chains of Investment in a Short Frequency of Time," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 10(8), pages 906-919, August.
    3. Sri Murniani Angelina Letsoin & David Herak & Fajar Rahmawan & Ratna Chrismiari Purwestri, 2020. "Land Cover Changes from 1990 to 2019 in Papua, Indonesia: Results of the Remote Sensing Imagery," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    4. Peng Tian & Luodan Cao & Jialin Li & Ruiliang Pu & Hongbo Gong & Changda Li, 2020. "Landscape Characteristics and Ecological Risk Assessment Based on Multi-Scenario Simulations: A Case Study of Yancheng Coastal Wetland, China," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    5. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    6. Bhanu Watawana & Mats Isaksson, 2022. "Design and Simulations of a Self-Assembling Autonomous Vertical Farm for Urban Farming," Agriculture, MDPI, vol. 13(1), pages 1-14, December.
    7. Jun Wang & Zhihua Wang & Hongbin Cheng & Junmei Kang & Xiaoliang Liu, 2022. "Land Cover Changing Pattern in Pre- and Post-Earthquake Affected Area from Remote Sensing Data: A Case of Lushan County, Sichuan Province," Land, MDPI, vol. 11(8), pages 1-24, July.
    8. Yongqiang Liu & Shuang Wang & Zipeng Chen & Shuangshuang Tu, 2022. "Research on the Response of Ecosystem Service Function to Landscape Pattern Changes Caused by Land Use Transition: A Case Study of the Guangxi Zhuang Autonomous Region, China," Land, MDPI, vol. 11(5), pages 1-20, May.
    9. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    10. Biao Zhang & Dian Shao & Zhonghu Zhang, 2022. "Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China," Sustainability, MDPI, vol. 14(10), pages 1-36, May.
    11. Shahab S. Band & Saeid Janizadeh & Sunil Saha & Kaustuv Mukherjee & Saeid Khosrobeigi Bozchaloei & Artemi Cerdà & Manouchehr Shokri & Amirhosein Mosavi, 2020. "Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data," Land, MDPI, vol. 9(10), pages 1-23, September.
    12. Tianwei Geng & Hai Chen & Di Liu & Qinqin Shi & Hang Zhang, 2021. "Research on Mediating Mechanisms and the Impact on Food Provision Services in Poor Areas from the Perspective of Stakeholders," IJERPH, MDPI, vol. 18(19), pages 1-18, October.
    13. Ehab Hendawy & A. A. Belal & E. S. Mohamed & Abdelaziz Elfadaly & Beniamino Murgante & Ali A. Aldosari & Rosa Lasaponara, 2019. "The Prediction and Assessment of the Impacts of Soil Sealing on Agricultural Land in the North Nile Delta (Egypt) Using Satellite Data and GIS Modeling," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    14. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    15. Luoman Pu & Jiuchun Yang & Lingxue Yu & Changsheng Xiong & Fengqin Yan & Yubo Zhang & Shuwen Zhang, 2021. "Simulating Land-Use Changes and Predicting Maize Potential Yields in Northeast China for 2050," IJERPH, MDPI, vol. 18(3), pages 1-21, January.
    16. Qinqin Shi & Hai Chen & Di Liu & Tianwei Geng & Hang Zhang, 2022. "Identifying the Spatial Imbalance in the Supply and Demand of Cultural Ecosystem Services," IJERPH, MDPI, vol. 19(11), pages 1-20, May.
    17. Sajjad Hussain & Linlin Lu & Muhammad Mubeen & Wajid Nasim & Shankar Karuppannan & Shah Fahad & Aqil Tariq & B. G. Mousa & Faisal Mumtaz & Muhammad Aslam, 2022. "Spatiotemporal Variation in Land Use Land Cover in the Response to Local Climate Change Using Multispectral Remote Sensing Data," Land, MDPI, vol. 11(5), pages 1-19, April.
    18. Man Li & Yanfang Zhang & Huancai Liu, 2022. "Carbon Neutrality in Shanxi Province: Scenario Simulation Based on LEAP and CA-Markov Models," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    19. Meryem Qacami & Abdellatif Khattabi & Said Lahssini & Nabil Rifai & Modeste Meliho, 2023. "Land-cover/land-use change dynamics modeling based on land change modeler," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 70(1), pages 237-258, February.
    20. Hongfei Zhao & Hongming He & Jingjing Wang & Chunyu Bai & Chuangjuan Zhang, 2018. "Vegetation Restoration and Its Environmental Effects on the Loess Plateau," Sustainability, MDPI, vol. 10(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8568-:d:861770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.