IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14123-d957094.html
   My bibliography  Save this article

A Method for Locational Risk Estimation of Vehicle–Children Accidents Considering Children’s Travel Purposes

Author

Listed:
  • Kojiro Matsuo

    (Department of Architecture and Civil Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan)

  • Kosuke Miyazaki

    (Department of Civil Engineering, National Institute of Technology, Kagawa College, Kagawa 761-8058, Japan)

  • Nao Sugiki

    (Department of Architecture and Civil Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan)

Abstract

The reduction in locational traffic accident risks through appropriate traffic safety management is important to support, maintain, and improve children’s safe and independent mobility. This study proposes and verifies a method to evaluate the risk of elementary school students-vehicle accidents (ESSVAs) at individual intersections on residential roads in Toyohashi city, Japan, considering the difference in travel purposes (i.e., school commuting purpose; SCP or non-school commuting purpose: NSCP), based on a statistical regression model and Empirical Bayes (EB) estimation. The results showed that the ESSVA risk of children’s travel in SCP is lower than that in NSCP, and not only ESSVAs in SCP but also most ESSVAs in NSCP occurred on or near the designated school routes. Therefore, it would make sense to implement traffic safety management and measures focusing on school routes. It was also found that the locational ESSVA risk structure is different depending on whether the purpose of the children’s travels is SCP or NSCP in the statistical model. Finally, it was suggested that evaluation of locational ESSVA risks based on the EB estimation is useful for efficiently extracting locations where traffic safety measures should be implemented compared to that only based on the number of accidents in the past.

Suggested Citation

  • Kojiro Matsuo & Kosuke Miyazaki & Nao Sugiki, 2022. "A Method for Locational Risk Estimation of Vehicle–Children Accidents Considering Children’s Travel Purposes," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14123-:d:957094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14123/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14123/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroki Ohnishi & Makoto Fujiu & Yuma Morisaki & Junichi Takayama, 2023. "Fundamental Analysis of the Ages of Children and Road Structures Involved in Traffic Accidents," Sustainability, MDPI, vol. 15(19), pages 1-15, October.
    2. Yage Wang & Xinshi Zhang & Shenghao Yuan & Hongwei Huang & Ying Tang & Chengyong Shi, 2025. "Analysis and Optimization Prioritization of School Routes in Mountainous Cities Based on Child-Friendly Principles: A Case Study of Chongqing," Sustainability, MDPI, vol. 17(9), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    4. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    5. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    6. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    7. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    8. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    9. Milhan Moomen & Amirarsalan Mehrara Molan & Khaled Ksaibati, 2023. "A Random Parameters Multinomial Logit Model Analysis of Median Barrier Crash Injury Severity on Wyoming Interstates," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    10. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    11. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    12. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    13. Buckley, Cathal & Howley, Peter & Jordan, Phil, 2015. "The role of differing farming motivations on the adoption of nutrient management practices," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 4(4), July.
    14. Hana Naghawi, 2018. "Negative Binomial Regression Model for Road Crash Severity Prediction," Modern Applied Science, Canadian Center of Science and Education, vol. 12(4), pages 1-38, April.
    15. Rose Luke, 2023. "Current and Future Trends in Driver Behaviour and Traffic Safety Scholarship: An African Research Agenda," IJERPH, MDPI, vol. 20(5), pages 1-23, February.
    16. Guilong Xu & Jinliang Xu & Chao Gao & Rishuang Sun & Huagang Shan & Yongji Ma & Jinsong Ran, 2022. "A Novel Safety Assessment Framework for Pavement Friction Evolution Due to Traffic on Horizontal Curves," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    17. Chen Chen & Feng Guo, 2016. "Evaluating the influence of crashes on driving risk using recurrent event models and Naturalistic Driving Study data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2225-2238, September.
    18. Yajie Zou & Xinzhi Zhong & Jinjun Tang & Xin Ye & Lingtao Wu & Muhammad Ijaz & Yinhai Wang, 2019. "A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    19. Dongkwan Lee & Jean-Michel Guldmann & Burkhard von Rabenau, 2018. "Interactions between the built and socio-economic environment and driver demographics: spatial econometric models of car crashes in the Columbus Metropolitan Area," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 22(1), pages 17-37, January.
    20. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14123-:d:957094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.