IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p11917-d920481.html
   My bibliography  Save this article

Urban Heat Island Mitigation: GIS-Based Analysis for a Tropical City Singapore

Author

Listed:
  • Ya Hui Teo

    (Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore S487372, Singapore
    These authors contributed equally to this work.)

  • Mohamed Akbar Bin Humayun Makani

    (Humanities, Arts and Social Sciences Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore S487372, Singapore
    These authors contributed equally to this work.)

  • Weimeng Wang

    (Information Systems Technology and Design Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore S487372, Singapore
    These authors contributed equally to this work.)

  • Linglan Liu

    (Department of Real Estate, National University of Singapore, 4 Architecture Drive, Singapore S117566, Singapore)

  • Jun Hong Yap

    (Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore S487372, Singapore)

  • Kang Hao Cheong

    (Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, Singapore S487372, Singapore)

Abstract

To reduce the pace of climate change and achieve the goals set in Paris Agreement by 2030, Association of Southeast Asian Nations (ASEAN) countries have started to prioritize sustainability as one of their top agendas. Numerous studies have demonstrated that one of the most important issues that must be addressed to halt climate change is the urban heat island (UHI). Given the different mitigation strategies available, the focus of our study here is to assess the influence of green spaces and Green Mark commercial buildings on Singapore’s temperature distribution using non-exhaustive factors related to energy consumption and efficiency. Additionally, this paper examines the effectiveness of green spaces and commercial buildings in reducing the rate of temperature change. This study uses ArcGIS software to map data, perform spatial analysis through cloud-based mapping, and produce visual representations with geographic information systems (GIS) to promote greater insight on the formulation of goals and policy making for strategic management. In comparison to non-commercial districts, our findings show that commercial districts have the lowest percentage of temperature change, an estimated 1.6 percent, due to a high concentration of green spaces and Green Mark commercial buildings. Our research also helps to close the research gaps in determining the efficacy of Green Mark commercial buildings, skyrise greeneries, gardens, and national parks. It also helps to minimize the bottleneck of expensive building costs and environmental damage that would have occurred from a design flaw found too late in the urban planning and construction process.

Suggested Citation

  • Ya Hui Teo & Mohamed Akbar Bin Humayun Makani & Weimeng Wang & Linglan Liu & Jun Hong Yap & Kang Hao Cheong, 2022. "Urban Heat Island Mitigation: GIS-Based Analysis for a Tropical City Singapore," IJERPH, MDPI, vol. 19(19), pages 1-23, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:11917-:d:920481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/11917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/11917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Li & Hanfa Xing & Duanguang Cao & Guang Yang & Huanxue Zhang, 2022. "Exploring the Effects of Roadside Vegetation on the Urban Thermal Environment Using Street View Images," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    2. Lingfei Shi & Feng Ling & Giles M. Foody & Zhen Yang & Xixi Liu & Yun Du, 2021. "Seasonal SUHI Analysis Using Local Climate Zone Classification: A Case Study of Wuhan, China," IJERPH, MDPI, vol. 18(14), pages 1-13, July.
    3. Yunfang Jiang & Jing Huang & Tiemao Shi & Hongxiang Wang, 2021. "Interaction of Urban Rivers and Green Space Morphology to Mitigate the Urban Heat Island Effect: Case-Based Comparative Analysis," IJERPH, MDPI, vol. 18(21), pages 1-29, October.
    4. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    5. Barrak Alahmad & Linda Powers Tomasso & Ali Al-Hemoud & Peter James & Petros Koutrakis, 2020. "Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands," IJERPH, MDPI, vol. 17(9), pages 1-12, April.
    6. Youpeng Lu & Wenze Yue & Yaping Huang, 2021. "Effects of Land Use on Land Surface Temperature: A Case Study of Wuhan, China," IJERPH, MDPI, vol. 18(19), pages 1-18, September.
    7. Tian Wang & Hui Tu & Bo Min & Zuzheng Li & Xiaofang Li & Qingxiang You, 2022. "The Mitigation Effect of Park Landscape on Thermal Environment in Shanghai City Based on Remote Sensing Retrieval Method," IJERPH, MDPI, vol. 19(5), pages 1-24, March.
    8. Yingxue Rao & Yi Zhong & Qingsong He & Jingyi Dai, 2022. "Assessing the Equity of Accessibility to Urban Green Space: A Study of 254 Cities in China," IJERPH, MDPI, vol. 19(8), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Chen & Jianjun Zhang & Xuelian Shi & Shidong Liu, 2020. "Impacts of Building Features on the Cooling Effect of Vegetation in Community-Based MicroClimate: Recognition, Measurement and Simulation from a Case Study of Beijing," IJERPH, MDPI, vol. 17(23), pages 1-22, November.
    2. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    3. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    4. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    5. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    6. Xiaojia Liu & Xi Chen & Yan Huang & Weihong Wang & Mingkan Zhang & Yang Jin, 2023. "Landscape Aesthetic Value of Waterfront Green Space Based on Space–Psychology–Behavior Dimension: A Case Study along Qiantang River (Hangzhou Section)," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    7. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    8. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    9. Zhen Yang & Weijun Gao, 2022. "Evaluating the Coordinated Development between Urban Greening and Economic Growth in Chinese Cities during 2005 to 2019," IJERPH, MDPI, vol. 19(15), pages 1-25, August.
    10. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    11. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    12. Ningcheng Gao & Hui Zhang & Pei Wang & Ling Ning & Nyuk Hien Wong & Haibo Yu & Zikang Ke, 2023. "Research on Microclimate-Suitable Spatial Patterns of Waterfront Settlements in Summer: A Case Study of the Nan Lake Area in Wuhan, China," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    13. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    14. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    15. Qian Dong & Qiuliang Zhang, 2022. "The Estimation of a Remote Sensing Model of Three-Dimensional Green Space Quantity and Research into Its Cooling Effect in Hohhot, China," Land, MDPI, vol. 11(9), pages 1-21, August.
    16. Salim Ferwati & Cynthia Skelhorn & Vivek Shandas & Yasuyo Makido, 2019. "A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    17. Heba Akasha & Omid Ghaffarpasand & Francis D. Pope, 2023. "Climate Change, Air Pollution and the Associated Burden of Disease in the Arabian Peninsula and Neighbouring Regions: A Critical Review of the Literature," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    18. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    19. Martina Giorio & Rossana Paparella, 2023. "Climate Mitigation Strategies: The Use of Cool Pavements," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    20. Nikolaos Sylliris & Apostolos Papagiannakis & Aristotelis Vartholomaios, 2023. "Improving the Climate Resilience of Urban Road Networks: A Simulation of Microclimate and Air Quality Interventions in a Typology of Streets in Thessaloniki Historic Centre," Land, MDPI, vol. 12(2), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:11917-:d:920481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.