IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i15p9723-d882378.html
   My bibliography  Save this article

Land Use Dynamic Evolution and Driving Factors of Typical Open-Pit Coal Mines in Inner Mongolia

Author

Listed:
  • Lijia Zhang

    (School of Geosciences & Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
    Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China)

  • Zhenqi Hu

    (School of Geosciences & Surveying Engineering, China University of Mining and Technology, Beijing 100083, China)

  • Dazhi Yang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Huanhuan Li

    (School of Land and Tourism, Luoyang Normal University, Luoyang 471000, China)

  • Bo Liu

    (School of Geomatics, Liaoning Technical University, Fuxin 123000, China)

  • He Gao

    (School of Earth Sciences, Yangtze University, Wuhan 430100, China)

  • Congjie Cao

    (School of Earth Sciences, Yangtze University, Wuhan 430100, China)

  • Yan Zhou

    (Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China)

  • Junfang Li

    (School of Earth Sciences and Resources, Chang’an University, Xi’an 710064, China)

  • Shuchang Li

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Although coal is difficult to replace in the short term, the large-scale production and consumption of coal have significant impacts on the ecological environment. The severe disturbances, such as land excavation and occupation, that accompany the mining of mineral resources have caused dramatic changes in land cover and a significant pressure on the sensitive and fragile ecological environment. To analyze the temporal and spatial evolution trends and the differences in land use in different typical mining areas in Inner Mongolia, as well as the evaluation system and driving mechanisms of land use evolution, this study takes the typical open-pit coal mines in Inner Mongolia as the research objects and, based on the Google Earth Engine (GEE) platform, analyzes the dynamic evolution characteristics and driving factors of land use in typical open-pit coal mines in Inner Mongolia from 2001 to 2020. The change trend of land use in typical open-pit mining areas in Inner Mongolia for the past 20 years is obvious, with the highest fluctuations for grassland, mining land, cropland, and residential/industrial land. Land use in the open-pit coal mining area is greatly affected by mining factors. From the perspective of spatial variation, the most important driving factor is the distance from national roads and railways, followed by the annual average temperature and annual average precipitation and topographical conditions, such as elevation. In terms of policy, land reclamation and ecological restoration in mining areas have a positive impact on land use change. Improving the mechanism for environmental compensation in mining areas can promote the efficient and rational use of mining areas and the protection of ecosystems.

Suggested Citation

  • Lijia Zhang & Zhenqi Hu & Dazhi Yang & Huanhuan Li & Bo Liu & He Gao & Congjie Cao & Yan Zhou & Junfang Li & Shuchang Li, 2022. "Land Use Dynamic Evolution and Driving Factors of Typical Open-Pit Coal Mines in Inner Mongolia," IJERPH, MDPI, vol. 19(15), pages 1-14, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9723-:d:882378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/15/9723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/15/9723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Min & Wang, Jinman & Feng, Yu, 2019. "Temporal and spatial change of land use in a large-scale opencast coal mine area: A complex network approach," Land Use Policy, Elsevier, vol. 86(C), pages 375-386.
    2. Liu, Jingjing & Wang, Jing & Zhai, Tianlin & Li, Zehui & Huang, Longyang & Yuan, Shaohua, 2021. "Gradient characteristics of China's land use patterns and identification of the east-west natural-socio-economic transitional zone for national spatial planning," Land Use Policy, Elsevier, vol. 109(C).
    3. Deslatte, Aaron & Szmigiel-Rawska, Katarzyna & Tavares, António F. & Ślawska, Justyna & Karsznia, Izabela & Łukomska, Julita, 2022. "Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland," Land Use Policy, Elsevier, vol. 114(C).
    4. Maryke C. Rademeyer, 2021. "Investigating the outcome for South African coal supply to the domestic market when faced with declining demand for exported coal," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(3), pages 441-453, October.
    5. Li, Sijia & Wang, Jinman & Zhang, Min & Tang, Qian, 2021. "Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020," Resources Policy, Elsevier, vol. 74(C).
    6. Huang, Yongfu, 2014. "Drivers of rising global energy demand: The importance of spatial lag and error dependence," Energy, Elsevier, vol. 76(C), pages 254-263.
    7. Gao, Yuan & Wang, Jinman & Zhang, Min & Li, Sijia, 2021. "Measurement and prediction of land use conflict in an opencast mining area," Resources Policy, Elsevier, vol. 71(C).
    8. Dai, G.S. & Ulgiati, S. & Zhang, Y.S. & Yu, B.H. & Kang, M.Y. & Jin, Y. & Dong, X.B. & Zhang, X.S., 2014. "The false promises of coal exploitation: How mining affects herdsmen well-being in the grassland ecosystems of Inner Mongolia," Energy Policy, Elsevier, vol. 67(C), pages 146-153.
    9. Tang, Qian & Wang, Jinman & Jing, Zhaorui & Yan, Youlong & Niu, Hebin, 2021. "Response of ecological vulnerability to land use change in a resource-based city, China," Resources Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuesong Li & Zhenjiang Jin & Liyuan Xiong & Lingchen Tong & Hongying Zhu & Xiaowen Zhang & Guangfa Qin, 2022. "Effects of Land Reclamation on Soil Bacterial Community and Potential Functions in Bauxite Mining Area," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    2. Ya Shao & Qinxue Xu & Xi Wei, 2023. "Progress of Mine Land Reclamation and Ecological Restoration Research Based on Bibliometric Analysis," Sustainability, MDPI, vol. 15(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Allan & Ali Soltani & Mohammad Hamed Abdi & Melika Zarei, 2022. "Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review," Land, MDPI, vol. 11(8), pages 1-20, August.
    2. Yang Chen & Zhenqi Hu & Pengyu Li & Gensheng Li & Dongzhu Yuan & Jiaxin Guo, 2022. "Assessment and Effect of Mining Subsidence on Farmland in Coal–Crop Overlapped Areas: A Case of Shandong Province, China," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    3. Yongqiang Liu & Shuang Wang & Zipeng Chen & Shuangshuang Tu, 2022. "Research on the Response of Ecosystem Service Function to Landscape Pattern Changes Caused by Land Use Transition: A Case Study of the Guangxi Zhuang Autonomous Region, China," Land, MDPI, vol. 11(5), pages 1-20, May.
    4. Wenbing Guo & Mingjie Guo & Yi Tan & Erhu Bai & Gaobo Zhao, 2019. "Sustainable Development of Resources and the Environment: Mining-Induced Eco-Geological Environmental Damage and Mitigation Measures—A Case Study in the Henan Coal Mining Area, China," Sustainability, MDPI, vol. 11(16), pages 1-34, August.
    5. Guanglong Dong & Yibing Ge & Haiwei Jia & Chuanzhun Sun & Senyuan Pan, 2021. "Land Use Multi-Suitability, Land Resource Scarcity and Diversity of Human Needs: A New Framework for Land Use Conflict Identification," Land, MDPI, vol. 10(10), pages 1-14, September.
    6. Tian Liang & Peng Du & Fei Yang & Yuanxia Su & Yinchen Luo & You Wu & Chuanhao Wen, 2022. "Potential Land-Use Conflicts in the Urban Center of Chongqing Based on the “Production–Living–Ecological Space” Perspective," Land, MDPI, vol. 11(9), pages 1-18, August.
    7. Liu, Quanlong & Qiu, Zunxiang & Li, Ma & Shang, Jianping & Niu, Weichao, 2023. "Evaluation and empirical research on green mine construction in coal industry based on the AHP-SPA model," Resources Policy, Elsevier, vol. 82(C).
    8. Zhao Wang & Tao Li & Shan Yang & Daili Zhong, 2022. "Spatio-Temporal Dynamic and Structural Characteristics of Land Use/Cover Change Based on a Complex Network: A Case Study of the Middle Reaches of Yangtze River Urban Agglomeration," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    9. Li, Sijia & Wang, Jinman & Zhang, Min & Tang, Qian, 2021. "Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020," Resources Policy, Elsevier, vol. 74(C).
    10. Feng, Dingrao & Bao, Wenkai & Yang, Yuanyuan & Fu, Meichen, 2021. "How do government policies promote greening? Evidence from China," Land Use Policy, Elsevier, vol. 104(C).
    11. Yan Sun & Xiaoping Ge & Junna Liu & Yuanyuan Chang & Gang-Jun Liu & Fu Chen, 2021. "Mitigating Spatial Conflict of Land Use for Sustainable Wetlands Landscape in Li-Xia-River Region of Central Jiangsu, China," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    12. Dingrao Feng & Wenkai Bao & Meichen Fu & Min Zhang & Yiyu Sun, 2021. "Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model," Land, MDPI, vol. 10(3), pages 1-25, March.
    13. Li, Ying & Cen, Hongyi & Lin, Tai-Yu & Lin, Yi-Nuo & Chiu, Yung-Ho, 2022. "Sustainable coal mine and coal land development in China," Resources Policy, Elsevier, vol. 79(C).
    14. Yuhang Shang & Xin Ye & Lun Dong & Shiming Liu & Tiantian Du & Guan Wang, 2022. "Landscape Pattern Evolution in a Mining City: An Urban Life Cycle Perspective," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    15. Shoyama, Kikuko & Kamiyama, Chiho & Morimoto, Junko & Ooba, Makoto & Okuro, Toshiya, 2017. "A review of modeling approaches for ecosystem services assessment in the Asian region," Ecosystem Services, Elsevier, vol. 26(PB), pages 316-328.
    16. Suizi Wang & Jiangwen Fan & Haiyan Zhang & Yaxian Zhang & Huajun Fang, 2023. "Harmonizing Population, Grain, and Land: Unlocking Sustainable Land Resource Management in the Farming–Pastoral Ecotone," Land, MDPI, vol. 12(7), pages 1-14, June.
    17. Guanglong Dong & Zhonghao Liu & Yuanzhao Niu & Wenya Jiang, 2022. "Identification of Land Use Conflicts in Shandong Province from an Ecological Security Perspective," Land, MDPI, vol. 11(12), pages 1-18, December.
    18. Jiawei Hui & Zhongke Bai & Baoying Ye & Zihao Wang, 2021. "Remote Sensing Monitoring and Evaluation of Vegetation Restoration in Grassland Mining Areas—A Case Study of the Shengli Mining Area in Xilinhot City, China," Land, MDPI, vol. 10(7), pages 1-18, July.
    19. Zhichao Guo & Feiyu Qin, 2022. "An Empirical Analysis of the Role of Forage Product Trade on Grassland Quality and Livestock Production in China," Land, MDPI, vol. 11(11), pages 1-16, October.
    20. Zhixian Sun & Yang Liu & Hongbin Sang, 2023. "Spatial-Temporal Variation and Driving Factors of Ecological Vulnerability in Nansi Lake Basin, China," IJERPH, MDPI, vol. 20(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9723-:d:882378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.