IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i14p8645-d863963.html
   My bibliography  Save this article

Research on the Eco-Efficiency of Rice Production and Its Improvement Path: A Case Study from China

Author

Listed:
  • Malan Huang

    (School of Business, Hubei University, Wuhan 430062, China
    China Agricultural Carbon Emission Reduction and Carbon Trading Research Center, Hubei University, Wuhan 430062, China)

  • Linlin Zeng

    (College of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China)

  • Chujie Liu

    (College of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China)

  • Xiaoyun Li

    (College of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China)

  • Hongling Wang

    (School of Business, Hubei University, Wuhan 430062, China
    China Agricultural Carbon Emission Reduction and Carbon Trading Research Center, Hubei University, Wuhan 430062, China)

Abstract

The eco-efficiency of rice production is an important indicator in the measurement of sustainable rice development. Scientific evaluation of the eco-efficiency of rice production facilitates accurate evaluation of the real level of rice ecosystems to realize efficient utilization of agricultural resources. This paper measured the eco-efficiency of farms growing rice using both the life cycle assessment (LCA) and the data envelopment analysis (DEA) methods based on survey data from 370 farms mainly growing rice conducted in 2020 in the Hubei Province, the middle reaches of the Yangtze River in China. Then, sensitivity analysis and scenario analysis were carried out on the comprehensive index of the rice environmental impact and eco-efficiency of rice production, respectively. The results indicate that the comprehensive index of the rice environmental impact was 2.0971. Water toxicity, soil toxicity and eutrophication were the main influencing factors. The mean value of the eco-efficiency reached 0.51. More specifically, the proportion of farms in the low-, middle- and high-efficiency groups was 87.03%, 1.89% and 11.08%, respectively, with mean values up to 0.42, 0.86 and 1.14, respectively. A sensitivity analysis revealed that the pesticide sensitivity was higher than the fertilizer sensitivity in terms of the environmental impact sensitivity of rice systems. When comprehensively considering environmental and economic benefits, the fertilizer sensitivity was higher than that of pesticides. Moreover, reducing the application of both fertilizers and pesticides by 50% could promote the eco-efficiency of rice production systems by 6%, and the value could reach 0.54. Thus, reducing the application of fertilizers and pesticides and improving the utilization efficiency are effective ways to improve green rice production.

Suggested Citation

  • Malan Huang & Linlin Zeng & Chujie Liu & Xiaoyun Li & Hongling Wang, 2022. "Research on the Eco-Efficiency of Rice Production and Its Improvement Path: A Case Study from China," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:14:p:8645-:d:863963
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/14/8645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/14/8645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiyotaka Masuda, 2019. "Eco-Efficiency Assessment of Intensive Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    2. van Calker, K. J. & Berentsen, P. B. M. & de Boer, I. M. J. & Giesen, G. W. J. & Huirne, R. B. M., 2004. "An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: model presentation and application for experimental farm "de Marke"," Agricultural Systems, Elsevier, vol. 82(2), pages 139-160, November.
    3. Xiaoshi Zhou & Wanglin Ma & Gucheng Li & Huanguang Qiu, 2020. "Farm machinery use and maize yields in China: an analysis accounting for selection bias and heterogeneity," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1282-1307, October.
    4. Liu, Yansui & Zou, Lilin & Wang, Yongsheng, 2020. "Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years," Land Use Policy, Elsevier, vol. 97(C).
    5. Renato Villano & Euan Fleming, 2006. "Technical Inefficiency and Production Risk in Rice Farming: Evidence from Central Luzon Philippines," Asian Economic Journal, East Asian Economic Association, vol. 20(1), pages 29-46, March.
    6. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changming Cheng & Jieqiong Li & Yuqing Qiu & Chunfeng Gao & Qiang Gao, 2022. "Evaluating the Spatiotemporal Characteristics of Agricultural Eco-Efficiency Alongside China’s Carbon Neutrality Targets," IJERPH, MDPI, vol. 19(23), pages 1-18, November.
    2. Runqi Lun & Wei Liu & Guojing Li & Qiyou Luo, 2024. "Does Digital Agricultural Technology Extension Service Enhance Sustainable Food Production? Evidence from Maize Farmers in China," Agriculture, MDPI, vol. 14(2), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangyan Ran & Guangyao Wang & Huijuan Du & Mi Lv, 2023. "Relationship of Cooperative Management and Green and Low-Carbon Transition of Agriculture and Its Impacts: A Case Study of the Western Tarim River Basin," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    2. Mengyang Hou & Zenglei Xi & Suyan Zhao, 2022. "Evaluating the Heterogeneity Effect of Fertilizer Use Intensity on Agricultural Eco-Efficiency in China: Evidence from a Panel Quantile Regression Model," IJERPH, MDPI, vol. 19(11), pages 1-22, May.
    3. Shilin Li & Zhiyuan Zhu & Zhenzhong Dai & Jiajia Duan & Danmeng Wang & Yongzhong Feng, 2022. "Temporal and Spatial Differentiation and Driving Factors of China’s Agricultural Eco-Efficiency Considering Agricultural Carbon Sinks," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    4. Kaili Wang & Ehsan Elahi & Yuge Zhang & Di Wang & Zainab Khalid, 2022. "A Development of Green Finance and Regional Eco-Efficiency in China," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    5. Bin Yang & Ying Wang & Yan Li & Lizi Mo, 2023. "Empirical Investigation of Cultivated Land Green Use Efficiency and Influencing Factors in China, 2000–2020," Land, MDPI, vol. 12(8), pages 1-17, August.
    6. Chunbin Zhang & Rong Zhou & Jundong Hou & Mengtong Feng, 2022. "Spatial-Temporal Evolution and Convergence Characteristics of Agricultural Eco-Efficiency in China from a Low-Carbon Perspective," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    7. Xiyao Zhang & Xiaolei Wang & Jia Liu, 2023. "Spatial–Temporal Evolution and Influential Factors of Eco-Efficiency in Chinese Urban Agglomerations," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
    8. Yanling Zong & Libang Ma & Zhihao Shi & Min Gong, 2023. "Agricultural Eco-Efficiency Response and Its Influencing Factors from the Perspective of Rural Population Outflowing: A Case Study in Qinan County, China," IJERPH, MDPI, vol. 20(2), pages 1-21, January.
    9. Changming Cheng & Jieqiong Li & Yuqing Qiu & Chunfeng Gao & Qiang Gao, 2022. "Evaluating the Spatiotemporal Characteristics of Agricultural Eco-Efficiency Alongside China’s Carbon Neutrality Targets," IJERPH, MDPI, vol. 19(23), pages 1-18, November.
    10. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    11. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    12. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    13. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    14. Ke Liu & Yurong Qiao & Qian Zhou, 2021. "Analysis of China’s Industrial Green Development Efficiency and Driving Factors: Research Based on MGWR," IJERPH, MDPI, vol. 18(8), pages 1-22, April.
    15. Xiao Zhang & Di Wang, 2023. "Beyond the Ecological Boundary: A Quasi-Natural Experiment on the Impact of National Marine Parks on Eco-Efficiency in Coastal Cities," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    16. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    17. Hongwei Liu & Ronglu Yang & Zhixiang Zhou & Dacheng Huang, 2020. "Regional Green Eco-Efficiency in China: Considering Energy Saving, Pollution Treatment, and External Environmental Heterogeneity," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    18. Blasi, E. & Passeri, N. & Franco, S. & Galli, A., 2016. "An ecological footprint approach to environmental–economic evaluation of farm results," Agricultural Systems, Elsevier, vol. 145(C), pages 76-82.
    19. van Calker, Klaas Jan & Antink, Rudi H.J. Hooch & Beldman, Alfons C.G. & Mauser, Anniek, 2005. "Caring Dairy: A Sustainable Dairy Farming Initiative in Europe," 15th Congress, Campinas SP, Brazil, August 14-19, 2005 24234, International Farm Management Association.
    20. Yakun Wang & Jingli Jiang & Dongqing Wang & Xinshang You, 2022. "Can Mechanization Promote Green Agricultural Production? An Empirical Analysis of Maize Production in China," Sustainability, MDPI, vol. 15(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:14:p:8645-:d:863963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.