IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i14p8230-d856611.html
   My bibliography  Save this article

Study on the Regularity of Ammonia-Related Refrigeration Accidents in China from 2010 to 2020

Author

Listed:
  • Cong Luo

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Yunsheng Zhao

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Ke Xu

    (Department of Emergency Management of Hubei Province, Wuhan 430064, China)

Abstract

The frequent occurrence of ammonia-related refrigeration accidents (ArRAs) restricts the safety and sustainable development of cold storage. As an essential tool for safety management, accident statistical analysis can provide a crucial decision-making basis for accident prevention and control. The present study combined descriptive statistics and comparative analysis methods to explore the characteristics and regularities of 82 ArRAs in China from 2010 to 2020. The results showed that the annual evolution of ArRAs presents a bimodal “M” mode in which 2013 and 2016 were the peaking years of accidents. The monthly distribution has an agglomeration effect, and the period from June to September had a high incidence period of accidents. The ArRAs mainly occurred in East China and Central China in the spatial dimension. Zhejiang, Shandong, Hubei, and Sichuan are the pivotal provinces for preventing and controlling ArRAs. Human factors and equipment failure are the leading causes of ArRAs. Accident numbers and casualties have inconsistent trends due to the uncertainty and variability of ArRAs’ consequences. The safety situation of ammonia-related refrigeration enterprises has improved but still needs to strive to prevent and control major accidents. This study draws valuable references for safety decision-making by ammonia-related refrigeration enterprises and safety regulators.

Suggested Citation

  • Cong Luo & Yunsheng Zhao & Ke Xu, 2022. "Study on the Regularity of Ammonia-Related Refrigeration Accidents in China from 2010 to 2020," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:14:p:8230-:d:856611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/14/8230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/14/8230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
    2. Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
    3. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan & Simonson, Carey James, 2022. "Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture," Energy, Elsevier, vol. 253(C).
    4. Cao, Yan & Mihardjo, Leonardus WW. & Dahari, Mahidzal & Ghaebi, Hadi & Parikhani, Towhid & Mohamed, Abdeliazim Mustafa, 2021. "An innovative double-flash binary cogeneration cooling and power (CCP) system: Thermodynamic evaluation and multi-objective optimization," Energy, Elsevier, vol. 214(C).
    5. Eydhah Almatrafi & Abdul Khaliq & Rajesh Kumar & Ahmad Bamasag & Muhammad Ehtisham Siddiqui, 2023. "Proposal and Investigation of a New Tower Solar Collector-Based Trigeneration Energy System," Sustainability, MDPI, vol. 15(9), pages 1-22, May.
    6. Akbari Kordlar, M. & Mahmoudi, S.M.S. & Talati, F. & Yari, M. & Mosaffa, A.H., 2019. "A new flexible geothermal based cogeneration system producing power and refrigeration, part two: The influence of ambient temperature," Renewable Energy, Elsevier, vol. 134(C), pages 875-887.
    7. Nima Javanshir & Seyed Mahmoudi S. M. & M. Akbari Kordlar & Marc A. Rosen, 2020. "Energy and Cost Analysis and Optimization of a Geothermal-Based Cogeneration Cycle Using an Ammonia-Water Solution: Thermodynamic and Thermoeconomic Viewpoints," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    8. Larry Orobome Agberegha & Peter Alenoghena Aigba & Solomon Chuka Nwigbo & Francis Onoroh & Olusegun David Samuel & Tanko Bako & Oguzhan Der & Ali Ercetin & Ramazan Sener, 2024. "Investigation of a Hybridized Cascade Trigeneration Cycle Combined with a District Heating and Air Conditioning System Using Vapour Absorption Refrigeration Cooling: Energy and Exergy Assessments," Energies, MDPI, vol. 17(6), pages 1-34, March.
    9. Rashidi, Jouan & Yoo, ChangKyoo, 2018. "Exergy, exergo-economic, and exergy-pinch analyses (EXPA) of the kalina power-cooling cycle with an ejector," Energy, Elsevier, vol. 155(C), pages 504-520.
    10. Mondal, Subha & De, Sudipta, 2017. "Ejector based organic flash combined power and refrigeration cycle (EBOFCP&RC) – A scheme for low grade waste heat recovery," Energy, Elsevier, vol. 134(C), pages 638-648.
    11. Prakash, M. & Sarkar, A. & Sarkar, J. & Chakraborty, J.P. & Mondal, S.S. & Sahoo, R.R., 2019. "Performance assessment of novel biomass gasification based CCHP systems integrated with syngas production," Energy, Elsevier, vol. 167(C), pages 379-390.
    12. Zhao, Yanan & Luo, Zuoqing & Long, Rui & Liu, Zhichun & Liu, Wei, 2020. "Performance evaluations of an adsorption-based power and cooling cogeneration system under different operative conditions and working fluids," Energy, Elsevier, vol. 204(C).
    13. Parikhani, Towhid & Ghaebi, Hadi & Rostamzadeh, Hadi, 2018. "A novel geothermal combined cooling and power cycle based on the absorption power cycle: Energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 153(C), pages 265-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:14:p:8230-:d:856611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.