IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i4p1963-d501128.html
   My bibliography  Save this article

Value Conflicts in Designing for Safety: Distinguishing Applications of Safe-by-Design and the Inherent Safety Principles

Author

Listed:
  • Britte Bouchaut

    (Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands)

  • Lotte Asveld

    (Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands)

  • Ulf Hanefeld

    (Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands)

  • Alexander Vlierboom

    (Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands)

Abstract

Although both the Inherent Safety Principles (ISPs) and the Safe-by-Design (SbD) approach revolve around the central value of safety, they have a slightly different focus in terms of developing add-on features or considering initial design choices. This paper examines the differences between these approaches and analyses which approach is more suitable for a specific type of research—fundamental or applied. By applying the ISPs and SbD to a case study focusing on miniaturized processes using Hydrogen Cyanide, we find that both approaches encounter internal value-conflicts and suffer from external barriers, or lock-ins, which hinder implementation of safety measures. By applying the Technology Readiness Levels (TRLs), we gain insight in the matureness of a technology (thereby distinguishing fundamental and applied research) and the extent of lock-ins being present. We conclude that the ISPs are better able to deal with lock-ins, which are more common in applied research stages, as this approach provides guidelines for add-on safety measures. Fundamental research is not subject to lock-ins yet, and therefore SbD would be a more suitable approach. Lastly, application of either approach should not be associated with a specific field of interest, but instead with associated known or uncertain risks.

Suggested Citation

  • Britte Bouchaut & Lotte Asveld & Ulf Hanefeld & Alexander Vlierboom, 2021. "Value Conflicts in Designing for Safety: Distinguishing Applications of Safe-by-Design and the Inherent Safety Principles," IJERPH, MDPI, vol. 18(4), pages 1-13, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1963-:d:501128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/4/1963/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/4/1963/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Casson Moreno, Valeria & Papasidero, Salvatore & Scarponi, Giordano Emrys & Guglielmi, Daniele & Cozzani, Valerio, 2016. "Analysis of accidents in biogas production and upgrading," Renewable Energy, Elsevier, vol. 96(PB), pages 1127-1134.
    2. Jan Pieter van der Berg & Gijs A. Kleter & Evy Battaglia & Lianne M. S. Bouwman & Esther J. Kok, 2020. "Application of the Safe-by-Design Concept in Crop Breeding Innovation," IJERPH, MDPI, vol. 17(17), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casson Moreno, Valeria & Guglielmi, Daniele & Cozzani, Valerio, 2018. "Identification of critical safety barriers in biogas facilities," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 81-94.
    2. Wang, Xuemei & Yan, Rui & Zhao, Yuying & Cheng, Shikun & Han, Yanzhao & Yang, Shuo & Cai, Di & Mang, Heinz-Peter & Li, Zifu, 2020. "Biogas standard system in China," Renewable Energy, Elsevier, vol. 157(C), pages 1265-1273.
    3. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    4. Stolecka, Katarzyna & Rusin, Andrzej, 2021. "Potential hazards posed by biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    6. Abbas, Tahir & Ali, Ghaffar & Adil, Sultan Ali & Bashir, Muhammad Khalid & Kamran, Muhammad Asif, 2017. "Economic analysis of biogas adoption technology by rural farmers: The case of Faisalabad district in Pakistan," Renewable Energy, Elsevier, vol. 107(C), pages 431-439.
    7. Long, Aoife & Murphy, Jerry D., 2019. "Can green gas certificates allow for the accurate quantification of the energy supply and sustainability of biomethane from a range of sources for renewable heat and or transport?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Paladino, O. & Neviani, M., 2018. "A closed loop biowaste to biofuel integrated process fed with waste frying oil, organic waste and algal biomass: Feasibility at pilot scale," Renewable Energy, Elsevier, vol. 124(C), pages 61-74.
    9. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    10. Trávníček, Petr & Kotek, Luboš & Junga, Petr & Vítěz, Tomáš & Drápela, Karel & Chovanec, Jan, 2018. "Quantitative analyses of biogas plant accidents in Europe," Renewable Energy, Elsevier, vol. 122(C), pages 89-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1963-:d:501128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.