IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2020i1p54-d467168.html
   My bibliography  Save this article

Bayesian Spatial Survival Analysis of Duration to Cure among New Smear-Positive Pulmonary Tuberculosis (PTB) Patients in Iran, during 2011–2018

Author

Listed:
  • Eisa Nazar

    (Department of Biostatistics, Faculty of Health, Mashhad University of Medical Sciences, Mashhad 913767-3119, Iran)

  • Hossein Baghishani

    (Department of Statistics, Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood 316-3619995161, Iran)

  • Hassan Doosti

    (Department of Mathematics and Statistics, Macquarie University, Sydney, NSW 2109, Australia)

  • Vahid Ghavami

    (Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad 913767-3119, Iran)

  • Ehsan Aryan

    (Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad 917669-9199, Iran)

  • Mahshid Nasehi

    (Centre for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran 141994-3471, Iran)

  • Saeid Sharafi

    (Centre for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran 141994-3471, Iran)

  • Habibollah Esmaily

    (Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad 913767-3119, Iran)

  • Jamshid Yazdani Charati

    (Department of Biostatistics, Health Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari 484711-6548, Iran)

Abstract

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), and pulmonary TB is the most prevalent form of the disease worldwide. One of the most concrete actions to ensure an effective TB control program is monitoring TB treatment outcomes, particularly duration to cure; but, there is no strong evidence in this respect. Thus, the primary aim of this study was to examine the possible spatial variations of duration to cure and its associated factors in Iran using the Bayesian spatial survival model. All new smear-positive PTB patients have diagnosed from March 2011 to March 2018 were included in the study. Out of 34,744 patients, 27,752 (79.90%) patients cured and 6992 (20.10%) cases were censored. For inferential purposes, the Markov chain Monte Carlo algorithms are applied in a Bayesian framework. According to the Bayesian estimates of the regression parameters in the proposed model, a Bayesian spatial log-logistic model, the variables gender (male vs. female, TR = 1.09), altitude (>750 m vs. ≤750 m, TR = 1.05), bacilli density in initial smear (3+ and 2+ vs. 1–9 Basil & 1+, TR = 1.09 and TR = 1.02, respectively), delayed diagnosis (>3 months vs. <1 month, TR = 1.02), nationality (Iranian vs. other, TR = 1.02), and location (urban vs. rural, TR = 1.02) had a significant influence on prolonging the duration to cure. Indeed, pretreatment weight (TR = 0.99) was substantially associated with shorter duration to cure. In summary, the spatial log-logistic model with convolution prior represented a better performance to analyze the duration to cure of PTB patients. Also, our results provide valuable information on critical determinants of duration to cure. Prolonged duration to cure was observed in provinces with low TB incidence and high average altitude as well. Accordingly, it is essential to pay a special attention to such provinces and monitor them carefully to reduce the duration to cure while maintaining a focus on high-risk provinces in terms of TB prevalence.

Suggested Citation

  • Eisa Nazar & Hossein Baghishani & Hassan Doosti & Vahid Ghavami & Ehsan Aryan & Mahshid Nasehi & Saeid Sharafi & Habibollah Esmaily & Jamshid Yazdani Charati, 2020. "Bayesian Spatial Survival Analysis of Duration to Cure among New Smear-Positive Pulmonary Tuberculosis (PTB) Patients in Iran, during 2011–2018," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2020:i:1:p:54-:d:467168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/1/54/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/1/54/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Christopher Martin Sauer & David Sasson & Kenneth E Paik & Ned McCague & Leo Anthony Celi & Iván Sánchez Fernández & Ben M W Illigens, 2018. "Feature selection and prediction of treatment failure in tuberculosis," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    2. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    3. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    4. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    5. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    6. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    7. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    8. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    9. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    10. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    11. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    12. Peter Congdon, 2011. "The Spatial Pattern of Suicide in the US in Relation to Deprivation, Fragmentation and Rurality," Urban Studies, Urban Studies Journal Limited, vol. 48(10), pages 2101-2122, August.
    13. Shadi Rahimzadeh & Beata Burczynska & Alireza Ahmadvand & Ali Sheidaei & Sara Khademioureh & Forough Pazhuheian & Sahar Saeedi Moghaddam & James Bentham & Farshad Farzadfar & Mariachiara Di Cesare, 2021. "Geographical and socioeconomic inequalities in female breast cancer incidence and mortality in Iran: A Bayesian spatial analysis of registry data," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.
    14. Volker Schmid & Leonhard Held, 2004. "Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data," Biometrics, The International Biometric Society, vol. 60(4), pages 1034-1042, December.
    15. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    16. Marcus L. Nascimento & Kelly C. M. Gonçalves & Mario Jorge Mendonça, 2023. "Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 29-47, June.
    17. Corey Sparks & Joey Campbell, 2014. "An Application of Bayesian Methods to Small Area Poverty Rate Estimates," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 33(3), pages 455-477, June.
    18. Klein, Nadja & Herwartz, Helmut & Kneib, Thomas, 2020. "Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales," Journal of Econometrics, Elsevier, vol. 214(2), pages 513-539.
    19. Luca Grassetti & Laura Rizzi, 2019. "The determinants of individual health care expenditures in the Italian region of Friuli Venezia Giulia: evidence from a hierarchical spatial model estimation," Empirical Economics, Springer, vol. 56(3), pages 987-1009, March.
    20. Ngianga-Bakwin Kandala & Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Gerry Mackie & Bettina Shell-Duncan, 2019. "A Spatial Analysis of the Prevalence of Female Genital Mutilation/Cutting among 0–14-Year-Old Girls in Kenya," IJERPH, MDPI, vol. 16(21), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2020:i:1:p:54-:d:467168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.