IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i2p664-d310920.html
   My bibliography  Save this article

An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture

Author

Listed:
  • José A. Aznar-Sánchez

    (Department of Economy and Business, Research Centre on Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, 04120 Almería, Spain)

  • Juan F. Velasco-Muñoz

    (Department of Economy and Business, Research Centre on Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, 04120 Almería, Spain)

  • Belén López-Felices

    (Department of Economy and Business, Research Centre on Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, 04120 Almería, Spain)

  • Isabel M. Román-Sánchez

    (Department of Economy and Business, Research Centre on Mediterranean Intensive Agrosystems and Agrifood Biotechnology, University of Almería, 04120 Almería, Spain)

Abstract

Greenhouse farming is an agricultural management system that has demonstrated its efficiency in intensifying food production. These systems constitute a feasible alternative for ensuring food supply, which is one of the greatest challenges faced by humankind in the twenty-first century. Technology has been able to meet the challenges related to greenhouse farming in both contributing to overcoming its limitations, correcting adverse impacts and ensuring system sustainability. The objective of this article is to analyse the global research trends in greenhouse technology over the last two decades, in order to identify the main driving agents, the most outstanding research lines and possible gaps in the literature. Different methodologies have been used for the analysis; both quantitative and qualitative. The principal results show that there are different relevant lines of research related to different aspects of greenhouse farming: the use of water for irrigation, the design of the optimum structure of the greenhouse, conserving the soil in the best growing conditions, energy consumption of the system as a whole, climate control within the facility and pest control. The research is characterized by the being composed largely of ad hoc studies, which hinders the international collaboration between researchers and institutions. The research approach has shifted from being focused on increasing production and cost savings to aspects related to resource conservation and sustainability.

Suggested Citation

  • José A. Aznar-Sánchez & Juan F. Velasco-Muñoz & Belén López-Felices & Isabel M. Román-Sánchez, 2020. "An Analysis of Global Research Trends on Greenhouse Technology: Towards a Sustainable Agriculture," IJERPH, MDPI, vol. 17(2), pages 1-22, January.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:2:p:664-:d:310920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/2/664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/2/664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    2. Md Kamrul Hasan & Sam Desiere & Marijke D’Haese & Lalit Kumar, 2018. "Impact of climate-smart agriculture adoption on the food security of coastal farmers in Bangladesh," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 1073-1088, August.
    3. Douglas K. R. Robinson & Lu Huang & Yan Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01070417, HAL.
    4. José A. Aznar-Sánchez & Luis J. Belmonte-Ureña & Juan F. Velasco-Muñoz & Diego L. Valera, 2019. "Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain," IJERPH, MDPI, vol. 16(5), pages 1-16, March.
    5. E. Garfield & I. H. Sher, 1963. "New factors in the evaluation of scientific literature through citation indexing," American Documentation, Wiley Blackwell, vol. 14(3), pages 195-201, July.
    6. Aznar-Sánchez, José A. & Piquer-Rodríguez, María & Velasco-Muñoz, Juan F. & Manzano-Agugliaro, Francisco, 2019. "Worldwide research trends on sustainable land use in agriculture," Land Use Policy, Elsevier, vol. 87(C).
    7. Huang, Lu & Zhang, Yi & Guo, Ying & Zhu, Donghua & Porter, Alan L., 2014. "Four dimensional Science and Technology planning: A new approach based on bibliometrics and technology roadmapping," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 39-48.
    8. Alessia Cogato & Franco Meggio & Massimiliano De Antoni Migliorati & Francesco Marinello, 2019. "Extreme Weather Events in Agriculture: A Systematic Review," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    9. D.K. Robinson & Lu Huang & Ying Guo & Alan L. Porter, 2013. "Forecasting Innovation Pathways (FIP) for new and emerging science and technologies," Post-Print hal-01071140, HAL.
    10. Arho Suominen & Hannes Toivanen, 2016. "Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(10), pages 2464-2476, October.
    11. David Baguma & Willibald Loiskandl, 2010. "Rainwater harvesting technologies and practises in rural Uganda: a case study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 355-369, April.
    12. Sean L. Maxwell & Richard A. Fuller & Thomas M. Brooks & James E. M. Watson, 2016. "Biodiversity: The ravages of guns, nets and bulldozers," Nature, Nature, vol. 536(7615), pages 143-145, August.
    13. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Liang & Shengxi Bai & Kaixin Lin & Chui Ting Kwok & Siru Chen & Yihao Zhu & Chi Yan Tso, 2024. "Advancing Sustainable Development: Broad Applications of Passive Radiative Cooling," Sustainability, MDPI, vol. 16(6), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernesto Mesa-Vázquez & Juan F. Velasco-Muñoz & José A. Aznar-Sánchez & Belén López-Felices, 2021. "Three Decades of Behavioural Economics in Agriculture. An Overview of Global Research," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Belén López-Felices & José A. Aznar-Sánchez & Juan F. Velasco-Muñoz & María Piquer-Rodríguez, 2020. "Contribution of Irrigation Ponds to the Sustainability of Agriculture. A Review of Worldwide Research," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    3. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    4. Elizabeth Gibson & Tugrul Daim & Edwin Garces & Marina Dabic, 2018. "Technology Foresight: A Bibliometric Analysis to Identify Leading and Emerging Methods," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 12(1), pages 6-24.
    5. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
    6. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    7. Zhang, Yi & Robinson, Douglas K.R. & Porter, Alan L. & Zhu, Donghua & Zhang, Guangquan & Lu, Jie, 2016. "Technology roadmapping for competitive technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 175-186.
    8. Claudia A. Ochoa-Noriega & Juan F. Velasco-Muñoz & José A. Aznar-Sánchez & Ernesto Mesa-Vázquez, 2021. "Overview of Research on Sustainable Agriculture in Developing Countries. The Case of Mexico," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    9. Huang, Ying & Porter, Alan L. & Zhang, Yi & Lian, Xiangpeng & Guo, Ying, 2019. "An assessment of technology forecasting: Revisiting earlier analyses on dye-sensitized solar cells (DSSCs)," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 831-843.
    10. María J. López-Serrano & Juan F. Velasco-Muñoz & José A. Aznar-Sánchez & Isabel M. Román-Sánchez, 2020. "Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    11. Sungchul Kim & Dongsik Jang & Sunghae Jun & Sangsung Park, 2015. "A Novel Forecasting Methodology for Sustainable Management of Defense Technology," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    12. Li, Munan & Porter, Alan L. & Suominen, Arho, 2018. "Insights into relationships between disruptive technology/innovation and emerging technology: A bibliometric perspective," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 285-296.
    13. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    14. Gibson, Elizabeth & Daim, Tugrul U. & Dabic, Marina, 2019. "Evaluating university industry collaborative research centers," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 181-202.
    15. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    16. Chan-Yuan Wong & Hon-Ngen Fung, 2017. "Science-technology-industry correlative indicators for policy targeting on emerging technologies: exploring the core competencies and promising industries of aspirant economies," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 841-867, May.
    17. Cheng, Yu & Huang, Lucheng & Ramlogan, Ronnie & Li, Xin, 2017. "Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 170-183.
    18. Susana Martins Moretto & António Brandão Moniz & Douglas Robinson, 2015. "Visions on high-speed trains: a methodological analysis," IET Working Papers Series 05/2015, Universidade Nova de Lisboa, IET/CICS.NOVA-Interdisciplinary Centre on Social Sciences, Faculty of Science and Technology.
    19. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    20. Svetlana Valerievna Ratner & Vladislav Valerievich Klochkov, 2017. "Scenario Forecast for Wind Turbine Manufacturing in Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 144-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:2:p:664-:d:310920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.