IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i9p1542-d227505.html
   My bibliography  Save this article

Risk Factors Affecting Traffic Accidents at Urban Weaving Sections: Evidence from China

Author

Listed:
  • Xinhua Mao

    (School of Economics and Management, Chang’an University, Xi’an 710064, China
    Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Changwei Yuan

    (School of Economics and Management, Chang’an University, Xi’an 710064, China)

  • Jiahua Gan

    (Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, China)

  • Shiqing Zhang

    (School of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China)

Abstract

As a critical configuration of interchanges, the weaving section is inclined to be involved in more traffic accidents, which may bring about severe casualties. To identify the factors associated with traffic accidents at the weaving section, we employed the multinomial logistic regression approach to identify the correlation between six categories of risk factors (drivers’ attributes, weather conditions, traffic characteristics, driving behavior, vehicle types and temporal-spatial distribution) and four types of traffic accidents (rear-end, side wipe, collision with fixtures and rollover) based on 768 accident samples of an observed weaving section from 2016 to 2018. The modeling results show that drivers’ gender and age, weather condition, traffic density, weaving ratio, vehicle speed, lane change behavior, private cars, season, time period, day of week and accident location are important factors affecting traffic accidents at the weaving section, but they have different contributions to the four traffic accident types. The results also show that traffic density of ≥31 vehicle/100 m has the highest risk of causing rear-end accidents, weaving ration of ≥41% has the highest possibility to bring about a side wipe incident, collision with fixtures is the most likely to happen in snowy weather, and rollover is the most likely incident to occur in rainy weather.

Suggested Citation

  • Xinhua Mao & Changwei Yuan & Jiahua Gan & Shiqing Zhang, 2019. "Risk Factors Affecting Traffic Accidents at Urban Weaving Sections: Evidence from China," IJERPH, MDPI, vol. 16(9), pages 1-17, May.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1542-:d:227505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/9/1542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/9/1542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Lu & Liu, Pan & Chan, Ching-Yao & Li, Zhibin, 2017. "Estimating level of service of mid-block bicycle lanes considering mixed traffic flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 203-217.
    2. Golob, Thomas F. & Recker, Wilfred W. & Alvarez, Veronica M., 2004. "Safety aspects of freeway weaving sections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(1), pages 35-51, January.
    3. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    4. Sauerbrei, W. & Meier-Hirmer, C. & Benner, A. & Royston, P., 2006. "Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3464-3485, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Effect of Imitation Phenomenon on Two-Lane Traffic Safety in Fog Weather," IJERPH, MDPI, vol. 16(19), pages 1-15, October.
    2. Zhanji Zheng & Qiaojun Xiang & Xin Gu & Yongfeng Ma & Kangkang Zheng, 2020. "The Influence of Individual Differences on Diverging Behavior at the Weaving Sections of an Urban Expressway," IJERPH, MDPI, vol. 18(1), pages 1-17, December.
    3. Fanyu Wang & Junyou Zhang & Shufeng Wang & Sixian Li & Wenlan Hou, 2020. "Analysis of Driving Behavior Based on Dynamic Changes of Personality States," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    4. Yaqi Liu & Xiaoyuan Wang, 2020. "Differences in Driving Intention Transitions Caused by Driver’s Emotion Evolutions," IJERPH, MDPI, vol. 17(19), pages 1-22, September.
    5. Yuquan Zhou & Yingzhi Wang & Feng Zhang & Hongye Zhou & Keran Sun & Yuhan Yu, 2023. "GATR: A Road Network Traffic Violation Prediction Method Based on Graph Attention Network," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    6. Jinliang Xu & Tian Xin & Chao Gao & Zhenhua Sun, 2022. "Study on the Maximum Safe Instantaneous Input of the Steering Wheel against Rollover for Trucks on Horizontal Curves," IJERPH, MDPI, vol. 19(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    2. Shaun Scholes & Madhavi Bajekal & Paul Norman & Martin O’Flaherty & Nathaniel Hawkins & Mika Kivimäki & Simon Capewell & Rosalind Raine, 2013. "Quantifying Policy Options for Reducing Future Coronary Heart Disease Mortality in England: A Modelling Study," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-1, July.
    3. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    4. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    5. Haomiao Li & Yingchun Chen & Hongxia Gao & Jingjing Chang & Dai Su & Shihan Lei & Di Jiang & Xiaomei Hu & Min Tan & Zhifang Chen, 2019. "Effect of an Integrated Payment System on the Direct Economic Burden and Readmission of Rural Cerebral Infarction Inpatients: Evidence from Anhui, China," IJERPH, MDPI, vol. 16(9), pages 1-12, May.
    6. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    7. Andreas Nikiforiadis & Socrates Basbas & Foteini Mikiki & Aikaterini Oikonomou & Efrosyni Polymeroudi, 2021. "Pedestrians-Cyclists Shared Spaces Level of Service: Comparison of Methodologies and Critical Discussion," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    8. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    9. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    11. Hafiz Muhammad Arslan & Ye Chengang & Bilal & Muhammad Siddique & Yusra Yahya, 2022. "Influence of Senior Executives Characteristics on Corporate Environmental Disclosures: A Bibliometric Analysis," JRFM, MDPI, vol. 15(3), pages 1-21, March.
    12. Xiangyang Cao & Bingzhong Zhou & Qiang Tang & Jiaqi Li & Donghui Shi, 2018. "Urban Wasteful Transport and Its Estimation Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    13. Jin, Wen-Long, 2017. "Kinematic wave models of lane-drop bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 507-522.
    14. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    15. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    16. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    17. Snelder, M. & Wesseling, B. & van Arem, B. & Hertogh, M.J.C.M., 2017. "Evaluating the robustness effects of infrastructure projects based on their topological and geometrical roadway designs," Transport Policy, Elsevier, vol. 57(C), pages 20-30.
    18. Alla Koblyakova & Michael White, 2017. "Supply driven mortgage choice," Urban Studies, Urban Studies Journal Limited, vol. 54(5), pages 1194-1210, April.
    19. Marzoug, R. & Lakouari, N. & Ez-Zahraouy, H. & Castillo Téllez, B. & Castillo Téllez, M. & Cisneros Villalobos, L., 2022. "Modeling and simulation of car accidents at a signalized intersection using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    20. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1542-:d:227505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.