IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i14p2486-d247815.html
   My bibliography  Save this article

Spatiotemporal Transmission Patterns and Determinants of Dengue Fever: A Case Study of Guangzhou, China

Author

Listed:
  • Yebin Chen

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China
    Research Institute of Smart City, School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China)

  • Zhigang Zhao

    (Research Institute of Smart City, School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China)

  • Zhichao Li

    (Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China)

  • Weihong Li

    (School of Geography, South China Normal University, Guangzhou 510631, China)

  • Zhipeng Li

    (Institute of Digital Agriculture Research, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China)

  • Renzhong Guo

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China
    Research Institute of Smart City, School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China)

  • Zhilu Yuan

    (Research Institute of Smart City, School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China)

Abstract

Dengue fever is one of the most common vector-borne diseases in the world and is mainly affected by the interaction of meteorological, human and land-use factors. This study aims to identify the impact of meteorological, human and land-use factors on dengue fever cases, involving the interplay between multiple factors. The analyses identified the statistically significant determinants affecting the transmission of dengue fever, employing cross-correlation analysis and the geo-detector model. This study was conducted in Guangzhou, China, using the data of confirmed cases of dengue fever, daily meteorological records, population density distribution and land-use distribution. The findings highlighted that the dengue fever hotspots were mainly distributed in the old city center of Guangzhou and were significantly shaped by meteorological, land-use and human factors. Meteorological factors including minimum temperature, maximum temperature, atmospheric pressure and relative humidity were correlated with the transmission of dengue fever. Minimum temperature, maximum temperature and relative humidity presented a statistically significant positive correlation with dengue fever cases, while atmospheric pressure presented statistically significant negative correlation. Minimum temperature, maximum temperature, atmospheric pressure and humidity have lag effects on the transmission of dengue fever. The population, community age, subway network density, road network density and ponds presented a statistically significant positive correlation with the number of dengue fever cases, and the interaction among land-use and human factors could enhance dengue fever transmission. The ponds were the most important interaction factors, which might strengthen the influence of other factors on dengue fever transmission. Our findings have implications for pre-emptive dengue fever control.

Suggested Citation

  • Yebin Chen & Zhigang Zhao & Zhichao Li & Weihong Li & Zhipeng Li & Renzhong Guo & Zhilu Yuan, 2019. "Spatiotemporal Transmission Patterns and Determinants of Dengue Fever: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(14), pages 1-14, July.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2486-:d:247815
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/14/2486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/14/2486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Hai-Yan Xu & Xiuju Fu & Lionel Kim Hock Lee & Stefan Ma & Kee Tai Goh & Jiancheng Wong & Mohamed Salahuddin Habibullah & Gary Kee Khoon Lee & Tian Kuay Lim & Paul Anantharajah Tambyah & Chin Leong Lim, 2014. "Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 8(5), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhichao Li & Helen Gurgel & Nadine Dessay & Luojia Hu & Lei Xu & Peng Gong, 2020. "Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation," IJERPH, MDPI, vol. 17(12), pages 1-29, June.
    2. Yuqi Zhang & Hongyan Ren & Runhe Shi, 2022. "Influences of Differentiated Residence and Workplace Location on the Identification of Spatiotemporal Patterns of Dengue Epidemics: A Case Study in Guangzhou, China," IJERPH, MDPI, vol. 19(20), pages 1-19, October.
    3. Shuli Zhou & Suhong Zhou & Lin Liu & Meng Zhang & Min Kang & Jianpeng Xiao & Tie Song, 2019. "Examining the Effect of the Environment and Commuting Flow from/to Epidemic Areas on the Spread of Dengue Fever," IJERPH, MDPI, vol. 16(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haogao Gu & Ross Ka-Kit Leung & Qinlong Jing & Wangjian Zhang & Zhicong Yang & Jiahai Lu & Yuantao Hao & Dingmei Zhang, 2016. "Meteorological Factors for Dengue Fever Control and Prevention in South China," IJERPH, MDPI, vol. 13(9), pages 1-12, August.
    2. Jue Tao Lim & Yiting Han & Borame Sue Lee Dickens & Lee Ching Ng & Alex R Cook, 2020. "Time varying methods to infer extremes in dengue transmission dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-19, October.
    3. Yu-Chieh Cheng & Fang-Jing Lee & Ya-Ting Hsu & Eric V Slud & Chao A Hsiung & Chun-Hong Chen & Ching-Len Liao & Tzai-Hung Wen & Chiu-Wen Chang & Jui-Hun Chang & Hsiao-Yu Wu & Te-Pin Chang & Pei-Sheng L, 2020. "Real-time dengue forecast for outbreak alerts in Southern Taiwan," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(7), pages 1-18, July.
    4. Felipe J. Colón-González & Rory Gibb & Kamran Khan & Alexander Watts & Rachel Lowe & Oliver J. Brady, 2023. "Projecting the future incidence and burden of dengue in Southeast Asia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Ting-Wu Chuang & Luis Fernando Chaves & Po-Jiang Chen, 2017. "Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-20, June.
    6. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    7. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    10. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    11. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    12. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    13. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    14. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.
    15. Gerhart Knerer & Christine S M Currie & Sally C Brailsford, 2020. "The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-32, October.
    16. Benjamin Lopez-Jimena & Michaël Bekaert & Mohammed Bakheit & Sieghard Frischmann & Pranav Patel & Etienne Simon-Loriere & Louis Lambrechts & Veasna Duong & Philippe Dussart & Graham Harold & Cheikh Fa, 2018. "Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(5), pages 1-22, May.
    17. Adriana Zubieta-Zavala & Guillermo Salinas-Escudero & Adrian Ramírez-Chávez & Luis García-Valladares & Malaquias López-Cervantes & Juan Guillermo López Yescas & Luis Durán-Arenas, 2016. "Calculation of the Average Cost per Case of Dengue Fever in Mexico Using a Micro-Costing Approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(8), pages 1-14, August.
    18. Fazli Wahid & Dr.Sajjad Ali & Jan Muhammad, 2021. "Effective Sources of Information in Winter Seasonal Diseases: The Perception of Residents of District Buner, KP," Journal of Media & Communication (JMC), Ilma University, Faculty of Media & Design, vol. 1(2), pages 215-229.
    19. Maria Glória Teixeira & Enny S Paixão & Maria da Conceição N Costa & Rivaldo V Cunha & Luciano Pamplona & Juarez P Dias & Camila A Figueiredo & Maria Aparecida A Figueiredo & Ronald Blanton & Vanessa , 2015. "Arterial Hypertension and Skin Allergy Are Risk Factors for Progression from Dengue to Dengue Hemorrhagic Fever: A Case Control Study," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-8, May.
    20. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2486-:d:247815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.