IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v13y2016i10p990-d79897.html
   My bibliography  Save this article

Low Dose Cadmium Inhibits Proliferation of Human Renal Mesangial Cells via Activation of the JNK Pathway

Author

Listed:
  • Xiaocui Chen

    (Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China)

  • Jing Li

    (Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China)

  • Zuowang Cheng

    (Taishan Medical College, Taian 271000, China)

  • Yinghua Xu

    (Taishan Medical College, Taian 271000, China)

  • Xia Wang

    (Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China)

  • Xiaorui Li

    (Taishan Medical College, Taian 271000, China)

  • Dongmei Xu

    (Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China)

  • Carolyn M. Kapron

    (Department of Biology, Trent University, Peterborough, ON K9L0G2, Canada)

  • Ju Liu

    (Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China)

Abstract

Cadmium (Cd) is a heavy metal and environmental pollutant. The kidney is the principal target organ of Cd exposure. Previously, we found that low concentration of Cd damages the integrity of the glomerular filtration barrier. However, little is known about the effects of Cd on renal mesangial cells, which provide structural support for the glomerular capillary loops and regulate intraglomerular blood flow. In this study, human renal mesangial cells (HRMCs) were cultured in the presence of serum and treated with 4 μM Cd. We found that Cd activates the c-Jun N-terminal kinase (JNK) pathway, and increases the protein levels of c-Jun and c-Fos. Cd treatment also induces a decrease in proliferation and an increase in apoptosis of HRMCs, but only the decrease in HRMC proliferation was reversed by pretreatment with SP600125, an inhibitor of the JNK pathway. In addition, Cd does not change the expression of α-smooth muscle actin and platelet-derived growth factor receptor-β, the markers of mesangial cells, or the alignment of the filamentous actin (F-actin) cytoskeleton of HRMCs. Our data indicate that the JNK pathway mediates the inhibitory effects of Cd on HRMC proliferation.

Suggested Citation

  • Xiaocui Chen & Jing Li & Zuowang Cheng & Yinghua Xu & Xia Wang & Xiaorui Li & Dongmei Xu & Carolyn M. Kapron & Ju Liu, 2016. "Low Dose Cadmium Inhibits Proliferation of Human Renal Mesangial Cells via Activation of the JNK Pathway," IJERPH, MDPI, vol. 13(10), pages 1-12, October.
  • Handle: RePEc:gam:jijerp:v:13:y:2016:i:10:p:990-:d:79897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/13/10/990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/13/10/990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuhong Liu & Bei Wang & Liqun Li & Fengyun Dong & Xiaocui Chen & Yan Li & Xiuzhen Dong & Youichiro Wada & Carolyn M. Kapron & Ju Liu, 2015. "Low-Dose Cadmium Upregulates VEGF Expression in Lung Adenocarcinoma Cells," IJERPH, MDPI, vol. 12(9), pages 1-14, August.
    2. Lufen Chang & Michael Karin, 2001. "Mammalian MAP kinase signalling cascades," Nature, Nature, vol. 410(6824), pages 37-40, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    2. Thomas C Whisenant & David T Ho & Ryan W Benz & Jeffrey S Rogers & Robyn M Kaake & Elizabeth A Gordon & Lan Huang & Pierre Baldi & Lee Bardwell, 2010. "Computational Prediction and Experimental Verification of New MAP Kinase Docking Sites and Substrates Including Gli Transcription Factors," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-21, August.
    3. Chih-Chien Wang & Chih-Yun Huang & Meng-Chang Lee & Dung-Jang Tsai & Chia-Chun Wu & Sui-Lung Su, 2021. "Genetic association between TNF-α G-308A and osteoarthritis in Asians: A case–control study and meta-analysis," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-15, November.
    4. Luca Marchetti & Rosario Lombardo & Corrado Priami, 2017. "HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    5. Jason W Locasale & Arup K Chakraborty, 2008. "Regulation of Signal Duration and the Statistical Dynamics of Kinase Activation by Scaffold Proteins," PLOS Computational Biology, Public Library of Science, vol. 4(6), pages 1-12, June.
    6. Lina Chen & Wan Li & Liangcai Zhang & Hong Wang & Weiming He & Jingxie Tai & Xu Li & Xia Li, 2011. "Disease Gene Interaction Pathways: A Potential Framework for How Disease Genes Associate by Disease-Risk Modules," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-12, September.
    7. Peter Rashkov & Ian P Barrett & Robert E Beardmore & Claus Bendtsen & Ivana Gudelj, 2016. "Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-15, November.
    8. Raffaele Pezzilli & Antonio M. Morselli-Labate, 2009. "Alcoholic Pancreatitis: Pathogenesis, Incidence and Treatment with Special Reference to the Associated Pain," IJERPH, MDPI, vol. 6(11), pages 1-20, November.
    9. Xubin Lu & Hui Jiang & Abdelaziz Adam Idriss Arbab & Bo Wang & Dingding Liu & Ismail Mohamed Abdalla & Tianle Xu & Yujia Sun & Zongping Liu & Zhangping Yang, 2023. "Investigating Genetic Characteristics of Chinese Holstein Cow’s Milk Somatic Cell Score by Genetic Parameter Estimation and Genome-Wide Association," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
    10. Hany A Omar & Wafaa R Mohamed & Hany H Arab & El-Shaimaa A Arafa, 2016. "Tangeretin Alleviates Cisplatin-Induced Acute Hepatic Injury in Rats: Targeting MAPKs and Apoptosis," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    11. Christopher C Govern & Arup K Chakraborty, 2009. "Signaling Cascades Modulate the Speed of Signal Propagation through Space," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-7, February.
    12. Aysegul Yildiz & Ozgur Tanriverdi, 2017. "MAPK and AKT Pathway Intersection in Neuroblastoma Cells," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 2(1), pages 17-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:10:p:990-:d:79897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.