IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i2p1560-1576d45211.html
   My bibliography  Save this article

Identifying Meteorological Drivers for the Seasonal Variations of Influenza Infections in a Subtropical City — Hong Kong

Author

Listed:
  • Ka Chun Chong

    (Division of Biostatistics, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
    Clinical Trials and Biostatistics Lab, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
    These authors contributed equally to this work.)

  • William Goggins

    (Division of Biostatistics, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China)

  • Benny Chung Ying Zee

    (Division of Biostatistics, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
    Clinical Trials and Biostatistics Lab, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China)

  • Maggie Haitian Wang

    (Division of Biostatistics, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
    Clinical Trials and Biostatistics Lab, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
    These authors contributed equally to this work.)

Abstract

Compared with temperate areas, the understanding of seasonal variations of influenza infections is lacking in subtropical and tropical regions. Insufficient information about viral activity increases the difficulty of forecasting the disease burden and thus hampers official preparation efforts. Here we identified potential meteorological factors that drove the seasonal variations in influenza infections in a subtropical city, Hong Kong. We fitted the meteorological data and influenza mortality data from 2002 to 2009 in a Susceptible-Infected-Recovered model. From the results, air temperature was a common significant driver of seasonal patterns and cold temperature was associated with an increase in transmission intensity for most of the influenza epidemics. Except 2004, the fitted models with significant meteorological factors could account for more than 10% of the variance in additional to the null model. Rainfall was also found to be a significant driver of seasonal influenza, although results were less robust. The identified meteorological indicators could alert officials to take appropriate control measures for influenza epidemics, such as enhancing vaccination activities before cold seasons. Further studies are required to fully justify the associations.

Suggested Citation

  • Ka Chun Chong & William Goggins & Benny Chung Ying Zee & Maggie Haitian Wang, 2015. "Identifying Meteorological Drivers for the Seasonal Variations of Influenza Infections in a Subtropical City — Hong Kong," IJERPH, MDPI, vol. 12(2), pages 1-17, January.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:2:p:1560-1576:d:45211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/2/1560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/2/1560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Radina P Soebiyanto & Farida Adimi & Richard K Kiang, 2010. "Modeling and Predicting Seasonal Influenza Transmission in Warm Regions Using Climatological Parameters," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-10, March.
    2. Simonsen, L. & Clarke, M.J. & Williamson, G.D. & Stroup, D.F. & Arden, N.H. & Schonberger, L.B., 1997. "The impact of influenza epidemics on mortality: Introducing a severity index," American Journal of Public Health, American Public Health Association, vol. 87(12), pages 1944-1950.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Gomez-Barroso & Inmaculada León-Gómez & Concepción Delgado-Sanz & Amparo Larrauri, 2017. "Climatic Factors and Influenza Transmission, Spain, 2010–2015," IJERPH, MDPI, vol. 14(12), pages 1-9, November.
    2. Nan Zhang & Yuguo Li, 2018. "Transmission of Influenza A in a Student Office Based on Realistic Person-to-Person Contact and Surface Touch Behaviour," IJERPH, MDPI, vol. 15(8), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rebuli, Nicolas P. & Bean, N.G. & Ross, J.V., 2018. "Estimating the basic reproductive number during the early stages of an emerging epidemic," Theoretical Population Biology, Elsevier, vol. 119(C), pages 26-36.
    2. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    3. Arthi, Vellore & Parman, John, 2021. "Disease, downturns, and wellbeing: Economic history and the long-run impacts of COVID-19," Explorations in Economic History, Elsevier, vol. 79(C).
    4. Xiao-Dong Yang & Hong-Li Li & Yue-E Cao, 2021. "Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location," IJERPH, MDPI, vol. 18(2), pages 1-13, January.
    5. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2016. "Success Is Something to Sneeze At: Influenza Mortality in Cities that Participate in the Super Bowl," American Journal of Health Economics, MIT Press, vol. 2(1), pages 125-143, January.
    6. Wudi Wei & Junjun Jiang & Hao Liang & Lian Gao & Bingyu Liang & Jiegang Huang & Ning Zang & Yanyan Liao & Jun Yu & Jingzhen Lai & Fengxiang Qin & Jinming Su & Li Ye & Hui Chen, 2016. "Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
    7. Oren Barnea & Amit Huppert & Guy Katriel & Lewi Stone, 2014. "Spatio-Temporal Synchrony of Influenza in Cities across Israel: The “Israel Is One City” Hypothesis," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    8. Alexander Cardazzi & Brad Humphreys & Jane E. Ruseski & Brian P. Soebbing & Nicholas Watanabe, 2020. "Professional Sporting Events Increase Seasonal Influenza Mortality in US Cities," Working Papers 20-08, Department of Economics, West Virginia University.
    9. Guoliang Zhang & Shuqiong Huang & Qionghong Duan & Wen Shu & Yongchun Hou & Shiyu Zhu & Xiaoping Miao & Shaofa Nie & Sheng Wei & Nan Guo & Hua Shan & Yihua Xu, 2013. "Application of a Hybrid Model for Predicting the Incidence of Tuberculosis in Hubei, China," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    10. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    11. Alex Huynh & Aaron Bruhn & Bridget Browne, 2013. "A Review of Catastrophic Risks for Life Insurers," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 16(2), pages 233-266, September.
    12. Julia B Wenger & Elena N Naumova, 2010. "Seasonal Synchronization of Influenza in the United States Older Adult Population," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-11, April.
    13. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2015. "Success is Something to Sneeze at: Influenza Mortality in Regions that Send Teams to the Super Bowl," Working Papers 1501, Tulane University, Department of Economics.
    14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    15. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    16. Jean-Paul Chretien & Dylan George & Jeffrey Shaman & Rohit A Chitale & F Ellis McKenzie, 2014. "Influenza Forecasting in Human Populations: A Scoping Review," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    17. Rui Zhang & Hejia Song & Qiulan Chen & Yu Wang & Songwang Wang & Yonghong Li, 2022. "Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-14, January.
    18. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    19. Maria Mavrouli & Spyridon Mavroulis & Efthymios Lekkas & Athanassios Tsakris, 2021. "Respiratory Infections Following Earthquake-Induced Tsunamis: Transmission Risk Factors and Lessons Learned for Disaster Risk Management," IJERPH, MDPI, vol. 18(9), pages 1-18, May.
    20. Soo Beom Choi & Insung Ahn, 2020. "Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:2:p:1560-1576:d:45211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.