IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v10y2013i6p2578-2595d26575.html
   My bibliography  Save this article

Genetic k -Means Clustering Approach for Mapping Human Vulnerability to Chemical Hazards in the Industrialized City: A Case Study of Shanghai, China

Author

Listed:
  • Weifang Shi

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Weihua Zeng

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

Abstract

Reducing human vulnerability to chemical hazards in the industrialized city is a matter of great urgency. Vulnerability mapping is an alternative approach for providing vulnerability-reducing interventions in a region. This study presents a method for mapping human vulnerability to chemical hazards by using clustering analysis for effective vulnerability reduction. Taking the city of Shanghai as the study area, we measure human exposure to chemical hazards by using the proximity model with additionally considering the toxicity of hazardous substances, and capture the sensitivity and coping capacity with corresponding indicators. We perform an improved k -means clustering approach on the basis of genetic algorithm by using a 500 m × 500 m geographical grid as basic spatial unit. The sum of squared errors and silhouette coefficient are combined to measure the quality of clustering and to determine the optimal clustering number. Clustering result reveals a set of six typical human vulnerability patterns that show distinct vulnerability dimension combinations. The vulnerability mapping of the study area reflects cluster-specific vulnerability characteristics and their spatial distribution. Finally, we suggest specific points that can provide new insights in rationally allocating the limited funds for the vulnerability reduction of each cluster.

Suggested Citation

  • Weifang Shi & Weihua Zeng, 2013. "Genetic k -Means Clustering Approach for Mapping Human Vulnerability to Chemical Hazards in the Industrialized City: A Case Study of Shanghai, China," IJERPH, MDPI, vol. 10(6), pages 1-18, June.
  • Handle: RePEc:gam:jijerp:v:10:y:2013:i:6:p:2578-2595:d:26575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/10/6/2578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/10/6/2578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George Clark & Susanne Moser & Samuel Ratick & Kirstin Dow & William Meyer & Srinivas Emani & Weigen Jin & Jeanne Kasperson & Roger Kasperson & Harry Schwarz, 1998. "Assessing the Vulnerability of Coastal Communities to Extreme Storms: The Case of Revere, MA., USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(1), pages 59-82, January.
    2. Ganlin Huang & Jonathan K. London, 2012. "Cumulative Environmental Vulnerability and Environmental Justice in California’s San Joaquin Valley," IJERPH, MDPI, vol. 9(5), pages 1-16, May.
    3. Eung Seok Kim & Hyun Il Choi, 2011. "Assessment of Vulnerability to Extreme Flash Floods in Design Storms," IJERPH, MDPI, vol. 8(7), pages 1-16, July.
    4. B. Preston & C. Brooke & T. Measham & T. Smith & R. Gorddard, 2009. "Igniting change in local government: lessons learned from a bushfire vulnerability assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(3), pages 251-283, March.
    5. Christopher Bone & Lilian Alessa & Mark Altaweel & Andrew Kliskey & Richard Lammers, 2011. "Assessing the Impacts of Local Knowledge and Technology on Climate Change Vulnerability in Remote Communities," IJERPH, MDPI, vol. 8(3), pages 1-29, March.
    6. Elizabeth L. Malone & Nathan L. Engle, 2011. "Evaluating regional vulnerability to climate change: purposes and methods," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(3), pages 462-474, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro Francini & Lucia Chieffallo & Annunziata Palermo & Maria Francesca Viapiana, 2020. "A Method for the Definition of Local Vulnerability Domains to Climate Change and Relate Mapping. Two Case Studies in Southern Italy," Sustainability, MDPI, vol. 12(22), pages 1-26, November.
    2. Daminda Solangaarachchi & Amy Griffin & Michael Doherty, 2012. "Social vulnerability in the context of bushfire risk at the urban-bush interface in Sydney: a case study of the Blue Mountains and Ku-ring-gai local council areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1873-1898, November.
    3. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    4. Giovanni Matteo & Pierfrancesco Nardi & Stefano Grego & Caterina Guidi, 2018. "Bibliometric analysis of Climate Change Vulnerability Assessment research," Environment Systems and Decisions, Springer, vol. 38(4), pages 508-516, December.
    5. Xinlu XIE & Yan ZHENG & Jiahua PAN & Hongjian ZHOU, 2018. "Urban Vulnerability and Adaptability to Climate Change: A Case Study of Cities in the Yangtze River Delta," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-19, March.
    6. Tauisi Taupo & Ilan Noy, 2017. "At the Very Edge of a Storm: The Impact of a Distant Cyclone on Atoll Islands," Economics of Disasters and Climate Change, Springer, vol. 1(2), pages 143-166, July.
    7. Issah Justice Musah-Surugu & Albert Ahenkan & Justcie Nyigmah Bawole, 2019. "Too weak to lead: motivation, agenda setting and constraints of local government to implement decentralized climate change adaptation policy in Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 587-607, April.
    8. Mohammad Karamouz & Zahra Zahmatkesh & Sara Nazif & Ali Razmi, 2014. "An Evaluation of Climate Change Impacts on Extreme Sea Level Variability: Coastal Area of New York City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3697-3714, September.
    9. Joern Birkmann & Susan Cutter & Dale Rothman & Torsten Welle & Matthias Garschagen & Bas Ruijven & Brian O’Neill & Benjamin Preston & Stefan Kienberger & Omar Cardona & Tiodora Siagian & Deny Hidayati, 2015. "Scenarios for vulnerability: opportunities and constraints in the context of climate change and disaster risk," Climatic Change, Springer, vol. 133(1), pages 53-68, November.
    10. Stefan Kienberger & Thomas Blaschke & Rukhe Zaidi, 2013. "A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1343-1369, September.
    11. Arouri, Mohamed & Nguyen, Cuong & Youssef, Adel Ben, 2015. "Natural Disasters, Household Welfare, and Resilience: Evidence from Rural Vietnam," World Development, Elsevier, vol. 70(C), pages 59-77.
    12. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    13. Dao Duy Minh & Philippe Lebailly & Nguyen Dang Hao & Philippe Burny & Ho Thi Minh Hop, 2019. "The Dynamics of Livelihood Vulnerability Index at Farm Household Level: An Empirical Analysis of the Coastal Sandy Zone in Thua Thien Hue Province, Vietnam," International Journal of Economics and Financial Issues, Econjournals, vol. 9(5), pages 77-89.
    14. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    15. Júlia Alves Menezes & Ulisses Confalonieri & Ana Paula Madureira & Isabela de Brito Duval & Rhavena Barbosa dos Santos & Carina Margonari, 2018. "Mapping human vulnerability to climate change in the Brazilian Amazon: The construction of a municipal vulnerability index," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-30, February.
    16. Lisa Rygel & David O’sullivan & Brent Yarnal, 2006. "A Method for Constructing a Social Vulnerability Index: An Application to Hurricane Storm Surges in a Developed Country," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 741-764, May.
    17. Duxbury, Jane & Dickinson, Sarah, 2007. "Principles for sustainable governance of the coastal zone: In the context of coastal disasters," Ecological Economics, Elsevier, vol. 63(2-3), pages 319-330, August.
    18. Margaret Gitau & Nathaniel Bailey, 2012. "Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed," Land, MDPI, vol. 1(1), pages 1-27, December.
    19. Muhammad Tauhidur Rahman & Adel S. Aldosary & Kh Md Nahiduzzaman & Imran Reza, 2016. "Vulnerability of flash flooding in Riyadh, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1807-1830, December.
    20. Annemarie Ebert & Norman Kerle & Alfred Stein, 2009. "Urban social vulnerability assessment with physical proxies and spatial metrics derived from air- and spaceborne imagery and GIS data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 275-294, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:10:y:2013:i:6:p:2578-2595:d:26575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.