IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i8p374-d1727122.html
   My bibliography  Save this article

Efficient Charging Station Selection for Minimizing Total Travel Time of Electric Vehicles

Author

Listed:
  • Yaqoob Al-Zuhairi

    (Department of Network Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain
    Department of Computer Engineering, Al-Iraqia University, Baghdad 10054, Iraq)

  • Prashanth Kannan

    (Department of Network Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain)

  • Alberto Bazán Guillén

    (Department of Network Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain)

  • Luis J. de la Cruz Llopis

    (Department of Network Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain)

  • Mónica Aguilar Igartua

    (Department of Network Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain)

Abstract

Electric vehicles (EVs) have gained significant attention in recent decades for their environmental benefits. However, their widespread adoption poses challenges due to limited charging infrastructure and long charging times, often resulting in underutilized charging stations (CSs) and unnecessary queues that complicate travel planning. Therefore, selecting the appropriate CS is essential for minimizing the total travel time of EVs, as it depends on both driving time and the required charging duration. This selection process requires estimating the energy required to reach each candidate CS and then continue to the destination, while also checking if the EV’s battery level is sufficient for a direct trip. To address this gap, we propose an integrated platform that leverages two ensemble machine learning models: Bi-LSTM + XGBoost to predict energy consumption, and FFNN + XGBoost for identifying the most suitable CS by considering required energy, waiting time at CS, charging speed, and driving time based on varying traffic conditions. This integration forms the core novelty of our system to optimize CS selection to minimize the total trip duration. This approach was validated with SUMO simulations and OpenStreetMap data, demonstrating a mean absolute error (MAE) ranging from 2.29 to 4.5 min, depending on traffic conditions, outperforming conventional approaches that rely on SUMO functions and mathematical calculations, which typically yielded MAEs between 5.1 and 10 min. These findings highlight the proposed system’s effectiveness in reducing total travel time, improving charging infrastructure utilization, and enhancing the overall experience for EV drivers.

Suggested Citation

  • Yaqoob Al-Zuhairi & Prashanth Kannan & Alberto Bazán Guillén & Luis J. de la Cruz Llopis & Mónica Aguilar Igartua, 2025. "Efficient Charging Station Selection for Minimizing Total Travel Time of Electric Vehicles," Future Internet, MDPI, vol. 17(8), pages 1-39, August.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:8:p:374-:d:1727122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/8/374/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/8/374/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    2. Parker, Nathan C. & Kuby, Michael & Liu, Jingteng & Stechel, Ellen B., 2025. "Extreme heat effects on electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 380(C).
    3. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    4. Zhang, Zhaosheng & Wang, Ruiyang & Liu, Peng & Wang, Zhenpo & Lin, Ni & Liang, Yiqiang & Tang, Chaoyang & Xia, Ling, 2025. "Research on energy consumption law and charging strategies design of electric buses," Energy, Elsevier, vol. 322(C).
    5. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    6. Amaro García-Suárez & José-Luis Guisado-Lizar & Fernando Diaz-del-Rio & Francisco Jiménez-Morales, 2021. "A Cellular Automata Agent-Based Hybrid Simulation Tool to Analyze the Deployment of Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    7. Ma, Yifan & Sun, Wei & Zhao, Zhoulun & Gu, Leqi & Zhang, Hui & Jin, Yucheng & Yuan, Xinmei, 2024. "Physically rational data augmentation for energy consumption estimation of electric vehicles," Applied Energy, Elsevier, vol. 373(C).
    8. Amirgholy, Mahyar & Gao, H. Oliver, 2023. "Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach," Applied Energy, Elsevier, vol. 329(C).
    9. Zhang, Xinfang & Zhang, Zhe & Liu, Yang & Xu, Zhigang & Qu, Xiaobo, 2024. "A review of machine learning approaches for electric vehicle energy consumption modelling in urban transportation," Renewable Energy, Elsevier, vol. 234(C).
    10. M. Zulfiqar & Nahar F. Alshammari & M. B. Rasheed, 2023. "Reinforcement Learning-Enabled Electric Vehicle Load Forecasting for Grid Energy Management," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    11. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    12. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).
    13. Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).
    14. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    15. Huang, Kai & Zhou, Peng & Liu, Zhiyuan & Tang, Tianli & Zhang, Honggang & Jiang, Wei, 2024. "The calculation and distribution of CAV carbon emissions on urban transportation systems: A comparative analysis of renewable and non-renewable energy sources," Renewable Energy, Elsevier, vol. 230(C).
    16. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
    17. Choi, Mingi & Cha, Junepyo & Song, Jingeun, 2025. "Impact of lightweighting and driving conditions on electric vehicle energy consumption: In-depth analysis using real-world testing and simulation," Energy, Elsevier, vol. 323(C).
    18. Edward Kozłowski & Piotr Wiśniowski & Maciej Gis & Magdalena Zimakowska-Laskowska & Anna Borucka, 2024. "Vehicle Acceleration and Speed as Factors Determining Energy Consumption in Electric Vehicles," Energies, MDPI, vol. 17(16), pages 1-16, August.
    19. Lee, Gwangryeol & Song, Jingeun & Han, Jungwon & Lim, Yunsung & Park, Suhan, 2023. "Study on energy consumption characteristics of passenger electric vehicle according to the regenerative braking stages during real-world driving conditions," Energy, Elsevier, vol. 283(C).
    20. Vishnu P. Sidharthan & Yashwant Kashyap & Panagiotis Kosmopoulos, 2023. "Adaptive-Energy-Sharing-Based Energy Management Strategy of Hybrid Sources in Electric Vehicles," Energies, MDPI, vol. 16(3), pages 1-26, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:8:p:374-:d:1727122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.