Author
Listed:
- Wanwei Huang
(College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450007, China)
- Hongchang Liu
(College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450007, China)
- Yingying Li
(College of Electronics & Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518005, China)
- Linlin Ma
(College of Information Technology, Zhengzhou Vocational College of Finance and Taxation, Zhengzhou 450048, China)
Abstract
To address the fact that changes in network topology can have an impact on the performance of routing, this paper proposes an Elastic Routing Algorithm based on Multi-Agent Deep Deterministic Policy Gradient (ERA-MADDPG), which is implemented within the framework of Multi-Agent Deep Deterministic Policy Gradient (MADDPG) in deep reinforcement learning. The algorithm first builds a three-layer architecture based on Software-Defined Networking (SDN). The top-down layers are the multi-agent layer, the controller layer, and the data layer. The architecture’s processing flow, including real-time data layer information collection and dynamic policy generation, enables the ERA-MADDPG algorithm to exhibit strong elasticity by quickly adjusting routing decisions in response to topology changes. The actor-critic framework combined with Convolutional Neural Networks (CNN) to implement the ERA-MADDPG routing algorithm effectively improves training efficiency, enhances learning stability, facilitates collaboration, and improves algorithm generalization and applicability. Finally, simulation experiments demonstrate that the convergence speed of the ERA-MADDPG routing algorithm outperforms that of the Multi-Agent Deep Q-Network (MADQN) algorithm and the Smart Routing based on Deep Reinforcement Learning (SR-DRL) algorithm, and the training speed in the initial phase is improved by approximately 20.9% and 39.1% compared to the MADQN algorithm and SR-DRL algorithm, respectively. The elasticity performance of ERA-MADDPG is quantified by re-convergence speed: under 5–15% topology node/link changes, its re-convergence speed is over 25% faster than that of MADQN and SR-DRL, demonstrating superior capability to maintain routing efficiency in dynamic environments.
Suggested Citation
Wanwei Huang & Hongchang Liu & Yingying Li & Linlin Ma, 2025.
"ERA-MADDPG: An Elastic Routing Algorithm Based on Multi-Agent Deep Deterministic Policy Gradient in SDN,"
Future Internet, MDPI, vol. 17(7), pages 1-20, June.
Handle:
RePEc:gam:jftint:v:17:y:2025:i:7:p:291-:d:1690451
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:7:p:291-:d:1690451. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.