IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i4p129-d1372658.html
   My bibliography  Save this article

All about Delay-Tolerant Networking (DTN) Contributions to Future Internet

Author

Listed:
  • Georgios Koukis

    (Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
    These authors contributed equally to this work.)

  • Konstantina Safouri

    (Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
    These authors contributed equally to this work.)

  • Vassilis Tsaoussidis

    (Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
    These authors contributed equally to this work.)

Abstract

Although several years have passed since its first introduction, the significance of Delay-Tolerant Networking (DTN) remains evident, particularly in challenging environments where traditional networks face operational limitations such as disrupted communication or high latency. This survey paper aims to explore the diverse array of applications where DTN technologies have proven successful, with a focus on emerging and novel application paradigms. In particular, we focus on the contributions of DTN in the Future Internet, including its contribution to space applications, smart cities and the Internet of Things, but also to underwater communications. We also discuss its potential to be used jointly with information-centric networks to change the internet communication paradigm in the future.

Suggested Citation

  • Georgios Koukis & Konstantina Safouri & Vassilis Tsaoussidis, 2024. "All about Delay-Tolerant Networking (DTN) Contributions to Future Internet," Future Internet, MDPI, vol. 16(4), pages 1-21, April.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:4:p:129-:d:1372658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/4/129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/4/129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    2. Sang-Hyun Park & Seungryong Cho & Jung-Ryun Lee, 2014. "Energy-Efficient Probabilistic Routing Algorithm for Internet of Things," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    2. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    3. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    4. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    5. Baohui Shi & Yuexia Zhang, 2021. "A Novel Algorithm to Optimize the Energy Consumption Using IoT and Based on Ant Colony Algorithm," Energies, MDPI, vol. 14(6), pages 1-17, March.
    6. Magdalena Krystyna Wyrwicka & Ewa Więcek-Janka & Łukasz Brzeziński, 2023. "Transition to Sustainable Energy System for Smart Cities—Literature Review," Energies, MDPI, vol. 16(21), pages 1-26, October.
    7. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.
    8. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    9. Olga Pilipczuk, 2020. "Sustainable Smart Cities and Energy Management: The Labor Market Perspective," Energies, MDPI, vol. 13(22), pages 1-24, November.
    10. Justyna Żywiołek & Francesco Schiavone, 2021. "Perception of the Quality of Smart City Solutions as a Sense of Residents’ Safety," Energies, MDPI, vol. 14(17), pages 1-16, September.
    11. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    12. Judyta Kabus & Michał Dziadkiewicz, 2023. "Modern Management Methods in the Area of Public Housing Resources in the Community," Sustainability, MDPI, vol. 15(10), pages 1-28, May.
    13. Olga Pilipczuk, 2021. "Determinants of Managerial Competences Transformation in the Polish Energy Industry," Energies, MDPI, vol. 14(20), pages 1-27, October.
    14. Laha, Priyanka & Chakraborty, Basab, 2021. "Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach," Renewable Energy, Elsevier, vol. 179(C), pages 233-247.
    15. Sajjad Miran & Muhammad Tamoor & Tayybah Kiren & Faakhar Raza & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Optimization of Standalone Photovoltaic Drip Irrigation System: A Simulation Study," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    16. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    17. Jing, Rui & Kuriyan, Kamal & Lin, Jian & Shah, Nilay & Zhao, Yingru, 2020. "Quantifying the contribution of individual technologies in integrated urban energy systems – A system value approach," Applied Energy, Elsevier, vol. 266(C).
    18. Wei, Shuangyu & Tien, Paige Wenbin & Calautit, John Kaiser & Wu, Yupeng & Boukhanouf, Rabah, 2020. "Vision-based detection and prediction of equipment heat gains in commercial office buildings using a deep learning method," Applied Energy, Elsevier, vol. 277(C).
    19. Walied Alharbi, 2023. "Integrating Internet-of-Things-Based Houses into Demand Response Programs in Smart Grid," Energies, MDPI, vol. 16(9), pages 1-13, April.
    20. Martin Hammerschmid & Daniel Cenk Rosenfeld & Alexander Bartik & Florian Benedikt & Josef Fuchs & Stefan Müller, 2023. "Methodology for the Development of Virtual Representations within the Process Development Framework of Energy Plants: From Digital Model to Digital Predictive Twin—A Review," Energies, MDPI, vol. 16(6), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:4:p:129-:d:1372658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.