IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i2p44-d1328330.html
   My bibliography  Save this article

Computer Vision and Machine Learning-Based Predictive Analysis for Urban Agricultural Systems

Author

Listed:
  • Arturs Kempelis

    (Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia)

  • Inese Polaka

    (Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia)

  • Andrejs Romanovs

    (Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia)

  • Antons Patlins

    (Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia)

Abstract

Urban agriculture presents unique challenges, particularly in the context of microclimate monitoring, which is increasingly important in food production. This paper explores the application of convolutional neural networks (CNNs) to forecast key sensor measurements from thermal images within this context. This research focuses on using thermal images to forecast sensor measurements of relative air humidity, soil moisture, and light intensity, which are integral to plant health and productivity in urban farming environments. The results indicate a higher accuracy in forecasting relative air humidity and soil moisture levels, with Mean Absolute Percentage Errors (MAPEs) within the range of 10–12%. These findings correlate with the strong dependency of these parameters on thermal patterns, which are effectively extracted by the CNNs. In contrast, the forecasting of light intensity proved to be more challenging, yielding lower accuracy. The reduced performance is likely due to the more complex and variable factors that affect light in urban environments. The insights gained from the higher predictive accuracy for relative air humidity and soil moisture may inform targeted interventions for urban farming practices, while the lower accuracy in light intensity forecasting highlights the need for further research into the integration of additional data sources or hybrid modeling approaches. The conclusion suggests that the integration of these technologies can significantly enhance the predictive maintenance of plant health, leading to more sustainable and efficient urban farming practices. However, the study also acknowledges the challenges in implementing these technologies in urban agricultural models.

Suggested Citation

  • Arturs Kempelis & Inese Polaka & Andrejs Romanovs & Antons Patlins, 2024. "Computer Vision and Machine Learning-Based Predictive Analysis for Urban Agricultural Systems," Future Internet, MDPI, vol. 16(2), pages 1-14, January.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:2:p:44-:d:1328330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/2/44/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/2/44/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yoo-Geun Ham & Jeong-Hwan Kim & Jing-Jia Luo, 2019. "Deep learning for multi-year ENSO forecasts," Nature, Nature, vol. 573(7775), pages 568-572, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuquan Qu & Diego G. Miralles & Sander Veraverbeke & Harry Vereecken & Carsten Montzka, 2023. "Wildfire precursors show complementary predictability in different timescales," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Coulibaly, Saliya & Bessin, Florent & Clerc, Marcel G. & Mussot, Arnaud, 2022. "Precursors-driven machine learning prediction of chaotic extreme pulses in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Wenxiang, Ding & Caiyun, Zhang & Shaoping, Shang & Xueding, Li, 2022. "Optimization of deep learning model for coastal chlorophyll a dynamic forecast," Ecological Modelling, Elsevier, vol. 467(C).
    4. Fenghua Ling & Jing-Jia Luo & Yue Li & Tao Tang & Lei Bai & Wanli Ouyang & Toshio Yamagata, 2022. "Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Xin Wei & Lulu Zhang & Junyao Luo & Dongsheng Liu, 2021. "A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 471-497, October.
    6. Yumin Liu & Kate Duffy & Jennifer G. Dy & Auroop R. Ganguly, 2023. "Explainable deep learning for insights in El Niño and river flows," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Li, Zhuo-Lin & Yu, Jie & Zhang, Xiao-Lin & Xu, Ling-Yu & Jin, Bao-Gang, 2022. "A Multi-Hierarchical attention-based prediction method on Time Series with spatio-temporal context among variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    8. Cheng, Wei & Wang, Yan & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Zang, Shengyin & Liu, Hao & Cheng, Hao & Wu, Jiagui, 2021. "High-efficiency chaotic time series prediction based on time convolution neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Yan, Qing-dong & Chen, Xiu-qi & Jian, Hong-chao & Wei, Wei & Wang, Wei-da & Wang, Heng, 2022. "Design of a deep inference framework for required power forecasting and predictive control on a hybrid electric mining truck," Energy, Elsevier, vol. 238(PC).
    10. Wei Fang & Yu Sha & Victor S. Sheng, 2022. "Survey on the Application of Artificial Intelligence in ENSO Forecasting," Mathematics, MDPI, vol. 10(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:2:p:44-:d:1328330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.