Skillful subseasonal soil moisture drought forecasts with deep learning-dynamic models
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-025-62761-3
Download full text from publisher
References listed on IDEAS
- H. Kim & Y. G. Ham & Y. S. Joo & S. W. Son, 2021. "Deep learning for bias correction of MJO prediction," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
- Chujie Gao & Haishan Chen & Shanlei Sun & Victor Ongoma & Wenjian Hua & Hedi Ma & Bei Xu & Yang Li, 2018. "A potential predictor of multi-season droughts in Southwest China: soil moisture and its memory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 553-566, March.
- Markus Reichstein & Gustau Camps-Valls & Bjorn Stevens & Martin Jung & Joachim Denzler & Nuno Carvalhais & Prabhat, 2019. "Deep learning and process understanding for data-driven Earth system science," Nature, Nature, vol. 566(7743), pages 195-204, February.
- Angeline G. Pendergrass & Gerald A. Meehl & Roger Pulwarty & Mike Hobbins & Andrew Hoell & Amir AghaKouchak & Céline J. W. Bonfils & Ailie J. E. Gallant & Martin Hoerling & David Hoffmann & Laurna Kaa, 2020. "Flash droughts present a new challenge for subseasonal-to-seasonal prediction," Nature Climate Change, Nature, vol. 10(3), pages 191-199, March.
- Stan Lipovetsky & Michael Conklin, 2001. "Analysis of regression in game theory approach," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 319-330, October.
- Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 619(7970), pages 533-538, July.
- Yoo-Geun Ham & Jeong-Hwan Kim & Jing-Jia Luo, 2019. "Deep learning for multi-year ENSO forecasts," Nature, Nature, vol. 573(7775), pages 568-572, September.
- Soukayna Mouatadid & Paulo Orenstein & Genevieve Flaspohler & Judah Cohen & Miruna Oprescu & Ernest Fraenkel & Lester Mackey, 2023. "Adaptive bias correction for improved subseasonal forecasting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Author Correction: Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 621(7980), pages 45-45, September.
- Vincent Humphrey & Alexis Berg & Philippe Ciais & Pierre Gentine & Martin Jung & Markus Reichstein & Sonia I. Seneviratne & Christian Frankenberg, 2021. "Soil moisture–atmosphere feedback dominates land carbon uptake variability," Nature, Nature, vol. 592(7852), pages 65-69, April.
- P. Krishna Krishnamurthy R & Joshua B. Fisher & Richard J. Choularton & Peter M. Kareiva, 2022. "Anticipating drought-related food security changes," Nature Sustainability, Nature, vol. 5(11), pages 956-964, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lei Chen & Xiaohui Zhong & Hao Li & Jie Wu & Bo Lu & Deliang Chen & Shang-Ping Xie & Libo Wu & Qingchen Chao & Chensen Lin & Zixin Hu & Yuan Qi, 2024. "A machine learning model that outperforms conventional global subseasonal forecast models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Markus Reichstein & Vitus Benson & Jan Blunk & Gustau Camps-Valls & Felix Creutzig & Carina J. Fearnley & Boran Han & Kai Kornhuber & Nasim Rahaman & Bernhard Schölkopf & José María Tárraga & Ricardo , 2025. "Early warning of complex climate risk with integrated artificial intelligence," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Hang Gao & Chun Shen & Xuesong Wang & Pak-Wai Chan & Kai-Kwong Hon & Jianbing Li, 2024. "Interpretable semi-supervised clustering enables universal detection and intensity assessment of diverse aviation hazardous winds," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
- Song Chen & Jiaxu Liu & Pengkai Wang & Chao Xu & Shengze Cai & Jian Chu, 2024. "Accelerated optimization in deep learning with a proportional-integral-derivative controller," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Yuchen Cai & Jia Yang & Yutang Hou & Feng Wang & Lei Yin & Shuhui Li & Yanrong Wang & Tao Yan & Shan Yan & Xueying Zhan & Jun He & Zhenxing Wang, 2025. "8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
- Huaisheng Tu & Haotian Liu & Tuqiang Pan & Wuping Xie & Zihao Ma & Fan Zhang & Pengbai Xu & Leiming Wu & Ou Xu & Yi Xu & Yuwen Qin, 2025. "Deep empirical neural network for optical phase retrieval over a scattering medium," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
- Hu, Rong & Zhou, Kaile & Lu, Xinhui, 2025. "Integrated loads forecasting with absence of crucial factors," Energy, Elsevier, vol. 322(C).
- Yingzhe Cui & Ruohan Wu & Xiang Zhang & Ziqi Zhu & Bo Liu & Jun Shi & Junshi Chen & Hailong Liu & Shenghui Zhou & Liang Su & Zhao Jing & Hong An & Lixin Wu, 2025. "Forecasting the eddying ocean with a deep neural network," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
- Khan, Taimoor & Choi, Chang, 2025. "Attention enhanced dual stream network with advanced feature selection for power forecasting," Applied Energy, Elsevier, vol. 377(PC).
- Zhou, Zhen & Gu, Ziyuan & Qu, Xiaobo & Liu, Pan & Liu, Zhiyuan & Yu, Wenwu, 2024. "Urban mobility foundation model: A literature review and hierarchical perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
- Frank Brückerhoff-Plückelmann & Hendrik Borras & Bernhard Klein & Akhil Varri & Marlon Becker & Jelle Dijkstra & Martin Brückerhoff & C. David Wright & Martin Salinga & Harish Bhaskaran & Benjamin Ris, 2024. "Probabilistic photonic computing with chaotic light," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Mattia Cavaiola & Federico Cassola & Davide Sacchetti & Francesco Ferrari & Andrea Mazzino, 2024. "Hybrid AI-enhanced lightning flash prediction in the medium-range forecast horizon," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Feng, Zhengyuan & Sun, Yuheng & Ning, Jun & Tang, Shoujuan & Liu, Guangxin & Liu, Fangtao & Li, Yang & Shi, Lei, 2025. "Implementing a provincial-level universal daily industrial carbon emissions prediction by fine-tuning the large language model," Applied Energy, Elsevier, vol. 383(C).
- Cheng Huang & Pan Mu & Jinglin Zhang & Sixian Chan & Shiqi Zhang & Hanting Yan & Shengyong Chen & Cong Bai, 2025. "Benchmark dataset and deep learning method for global tropical cyclone forecasting," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
- Florian Achermann & Thomas Stastny & Bogdan Danciu & Andrey Kolobov & Jen Jen Chung & Roland Siegwart & Nicholas Lawrance, 2024. "WindSeer: real-time volumetric wind prediction over complex terrain aboard a small uncrewed aerial vehicle," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Fenghua Ling & Jing-Jia Luo & Yue Li & Tao Tang & Lei Bai & Wanli Ouyang & Toshio Yamagata, 2022. "Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Wang, Yaqi & Zhao, Xiaomeng & Li, Zheng & Zhu, Wenbo & Gui, Renzhou, 2024. "A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement," Energy, Elsevier, vol. 312(C).
- Honghui Shang & Chu Guo & Yangjun Wu & Zhenyu Li & Jinlong Yang, 2025. "Solving the many-electron Schrödinger equation with a transformer-based framework," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62761-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62761-3.html