IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i12p462-d1539519.html
   My bibliography  Save this article

Generative AI in Medicine and Healthcare: Moving Beyond the ‘Peak of Inflated Expectations’

Author

Listed:
  • Peng Zhang

    (Department of Computer Science and Data Science Institute, Vanderbilt University, Nashville, TN 37240, USA)

  • Jiayu Shi

    (Department of Computer Science and Data Science Institute, Vanderbilt University, Nashville, TN 37240, USA)

  • Maged N. Kamel Boulos

    (School of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal)

Abstract

The rapid development of specific-purpose Large Language Models (LLMs), such as Med-PaLM, MEDITRON-70B, and Med-Gemini, has significantly impacted healthcare, offering unprecedented capabilities in clinical decision support, diagnostics, and personalized health monitoring. This paper reviews the advancements in medicine-specific LLMs, the integration of Retrieval-Augmented Generation (RAG) and prompt engineering, and their applications in improving diagnostic accuracy and educational utility. Despite the potential, these technologies present challenges, including bias, hallucinations, and the need for robust safety protocols. The paper also discusses the regulatory and ethical considerations necessary for integrating these models into mainstream healthcare. By examining current studies and developments, this paper aims to provide a comprehensive overview of the state of LLMs in medicine and highlight the future directions for research and application. The study concludes that while LLMs hold immense potential, their safe and effective integration into clinical practice requires rigorous testing, ongoing evaluation, and continuous collaboration among stakeholders.

Suggested Citation

  • Peng Zhang & Jiayu Shi & Maged N. Kamel Boulos, 2024. "Generative AI in Medicine and Healthcare: Moving Beyond the ‘Peak of Inflated Expectations’," Future Internet, MDPI, vol. 16(12), pages 1-21, December.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:12:p:462-:d:1539519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/12/462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/12/462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Farquhar & Jannik Kossen & Lorenz Kuhn & Yarin Gal, 2024. "Detecting hallucinations in large language models using semantic entropy," Nature, Nature, vol. 630(8017), pages 625-630, June.
    2. Peng Zhang & Maged N. Kamel Boulos, 2023. "Generative AI in Medicine and Healthcare: Promises, Opportunities and Challenges," Future Internet, MDPI, vol. 15(9), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Aman & Shankar, Amit & Hollebeek, Linda D. & Behl, Abhishek & Lim, Weng Marc, 2025. "Generative artificial intelligence (GenAI) revolution: A deep dive into GenAI adoption," Journal of Business Research, Elsevier, vol. 189(C).
    2. Abramson, Corey & Li, Zhuofan & Prendergast, Tara & Dohan, Daniel, 2025. "Qualitative Research in an Era of AI: A Pragmatic Approach to Data Analysis, Workflow, and Computation," SocArXiv 7bsgy_v1, Center for Open Science.
    3. Yusong Ke & Hongru Lin & Yuting Ruan & Junya Tang & Li Li, 2025. "Correctness Coverage Evaluation for Medical Multiple-Choice Question Answering Based on the Enhanced Conformal Prediction Framework," Mathematics, MDPI, vol. 13(9), pages 1-17, May.
    4. Francesco Carli & Pierluigi Chiaro & Mariangela Morelli & Chakit Arora & Luisa Bisceglia & Natalia Oliveira Rosa & Alice Cortesi & Sara Franceschi & Francesca Lessi & Anna Luisa Stefano & Orazio Santo, 2025. "Learning and actioning general principles of cancer cell drug sensitivity," Nature Communications, Nature, vol. 16(1), pages 1-23, December.
    5. Sara Hameed, 2025. "Generative AI’s Impact on Industry:Unveiling Transformative Applications, Opportunities and Challenges," International Journal of Innovations in Science & Technology, 50sea, vol. 7(1), pages 534-549, March.
    6. Li, Butong & Zhu, Junjie & Zhao, Xufeng, 2025. "A prior knowledge-guided predictive framework for LCF life and its implementation in shaft-like components under multiaxial loading," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    7. Igor Halperin, 2025. "Prompt-Response Semantic Divergence Metrics for Faithfulness Hallucination and Misalignment Detection in Large Language Models," Papers 2508.10192, arXiv.org.
    8. Zhou, Zhen & Gu, Ziyuan & Qu, Xiaobo & Liu, Pan & Liu, Zhiyuan & Yu, Wenwu, 2024. "Urban mobility foundation model: A literature review and hierarchical perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    9. Xiaohan Lin & Yijie Xia & Yanheng Li & Yu-Peng Huang & Shuo Liu & Jun Zhang & Yi Qin Gao, 2025. "In-silico 3D molecular editing through physics-informed and preference-aligned generative foundation models," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    10. Evangelia Fragkou & Dimitrios Katsaros, 2024. "A Joint Survey in Decentralized Federated Learning and TinyML: A Brief Introduction to Swarm Learning," Future Internet, MDPI, vol. 16(11), pages 1-28, November.
    11. Sanchaita Hazra & Marta Serra-Garcia, 2025. "Understanding Trust in AI as an Information Source: Cross-Country Evidence," CESifo Working Paper Series 11954, CESifo.
    12. Igor Halperin, 2025. "Topic Identification in LLM Input-Output Pairs through the Lens of Information Bottleneck," Papers 2509.03533, arXiv.org.
    13. Gupta, Rohit & Rathore, Bhawana, 2024. "Exploring the generative AI adoption in service industry: A mixed-method analysis," Journal of Retailing and Consumer Services, Elsevier, vol. 81(C).
    14. Humaid Al Naqbi & Zied Bahroun & Vian Ahmed, 2024. "Enhancing Work Productivity through Generative Artificial Intelligence: A Comprehensive Literature Review," Sustainability, MDPI, vol. 16(3), pages 1-37, January.
    15. Hui-Hung Yu & Wei-Tsun Lin & Chih-Wei Kuan & Chao-Chi Yang & Kuan-Min Liao, 2025. "GraphRAG-Enhanced Dialogue Engine for Domain-Specific Question Answering: A Case Study on the Civil IoT Taiwan Platform," Future Internet, MDPI, vol. 17(9), pages 1-22, September.
    16. Mohammad Saddam Hosen & MD Shahidul Islam Fakir & Shamal Chandra Hawlader & Farzana Rahman & Tasmim Karim & Muhammed Habil Uddin, 2025. "Generative AI-Driven Decision-Making for Disease Control and Pandemic Preparedness Model 4.0 in Rural Communities of Bangladesh: Management Informatics Approach," Papers 2508.01142, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:12:p:462-:d:1539519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.