IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i11p330-d971910.html
   My bibliography  Save this article

A Comparison of Blockchain Recovery Time in Static and Mobile IoT-Blockchain Networks

Author

Listed:
  • Yue Su

    (Graduate School of Science and Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan)

  • Kien Nguyen

    (Graduate School of Science and Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
    Institute for Advanced Academic Research, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan)

  • Hiroo Sekiya

    (Graduate School of Science and Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan)

Abstract

Many IoT-blockchain systems in which blockchain connections run on an infrastructure-based network, such as Wi-Fi or LTE, face a severe problem: the single point of failure (SPoF) (i.e., depending on the availability, an access point of an LTE base station). Using infrastructure-less networks (i.e., ad hoc networks) is an efficient approach to prevent such highly disruptive events. An ad hoc network can automatically restore blockchain communication using an ad hoc routing protocol, even if a node fails. Moreover, an ad hoc routing protocol is more efficient when considering the IoT nodes’ mobility. In this paper, we first construct IoT-blockchain systems on emulated and real ad hoc networks with Ethereum and three ad hoc routing protocols (i.e., OLSR, BATMAN, and BABEL). We then evaluate the blockchain recovery time in static and mobile scenarios. The results show that BATMAN achieves the best blockchain recovery performance in all investigated scenarios because BATMAN only determines whether to switch a route by comparing the number of OGM packets received from a different next-hop. More specifically, in the small-scale real IoT-blockchain, BATMAN recovers at least 73.9% and 59.8% better than OLSR and BABEL, respectively. In the medium-scale emulated IoT-blockchain, the recovery time of BATMAN is at least 69% and 60% shorter than OLSR or BABEL, respectively.

Suggested Citation

  • Yue Su & Kien Nguyen & Hiroo Sekiya, 2022. "A Comparison of Blockchain Recovery Time in Static and Mobile IoT-Blockchain Networks," Future Internet, MDPI, vol. 14(11), pages 1-20, November.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:11:p:330-:d:971910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/11/330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/11/330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edvard Tijan & Saša Aksentijević & Katarina Ivanić & Mladen Jardas, 2019. "Blockchain Technology Implementation in Logistics," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    2. Xuan Chen & Shujuan Tian & Kien Nguyen & Hiroo Sekiya, 2021. "Decentralizing Private Blockchain-IoT Network with OLSR," Future Internet, MDPI, vol. 13(7), pages 1-14, June.
    3. Jesse Yli-Huumo & Deokyoon Ko & Sujin Choi & Sooyong Park & Kari Smolander, 2016. "Where Is Current Research on Blockchain Technology?—A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-27, October.
    4. Valentina Gatteschi & Fabrizio Lamberti & Claudio Demartini & Chiara Pranteda & Víctor Santamaría, 2018. "Blockchain and Smart Contracts for Insurance: Is the Technology Mature Enough?," Future Internet, MDPI, vol. 10(2), pages 1-16, February.
    5. Abderahman Rejeb & John G. Keogh & Horst Treiblmaier, 2019. "Leveraging the Internet of Things and Blockchain Technology in Supply Chain Management," Future Internet, MDPI, vol. 11(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hangwei Feng & Jinlin Wang & Yang Li, 2022. "An Efficient Blockchain Transaction Retrieval System," Future Internet, MDPI, vol. 14(9), pages 1-21, September.
    2. Abderahman Rejeb & John G. Keogh & Suhaiza Zailani & Horst Treiblmaier & Karim Rejeb, 2020. "Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions," Logistics, MDPI, vol. 4(4), pages 1-26, October.
    3. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    4. Horst Treiblmaier, 2021. "Exploring the Next Wave of Blockchain and Distributed Ledger Technology: The Overlooked Potential of Scenario Analysis," Future Internet, MDPI, vol. 13(7), pages 1-13, July.
    5. Sharma, Mahak & Sehrawat, Rajat & Daim, Tugrul & Shaygan, Amir, 2021. "Technology assessment: Enabling Blockchain in hospitality and tourism sectors," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    6. Mubashir Hayat & Herwig Winkler, 2022. "From Traditional Product Lifecycle Management Systems to Blockchain-Based Platforms," Logistics, MDPI, vol. 6(3), pages 1-14, June.
    7. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    8. Luisanna Cocco & Roberto Tonelli & Michele Marchesi, 2021. "Blockchain and Self Sovereign Identity to Support Quality in the Food Supply Chain," Future Internet, MDPI, vol. 13(12), pages 1-19, November.
    9. Kwang O. Park, 2020. "A Study on Sustainable Usage Intention of Blockchain in the Big Data Era: Logistics and Supply Chain Management Companies," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    10. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    11. Büttgen, Marion & al.,, 2021. "Blockchain in Service Management and Service Research - Developing a Research Agenda and Managerial Implications," SMR - Journal of Service Management Research, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 5(2), pages 71-102.
    12. Ximing Chen & Jie Shang & Muhammad Zada & Shagufta Zada & Xueqiang Ji & Heesup Han & Antonio Ariza-Montes & Jesús Ramírez-Sobrino, 2021. "Health Is Wealth: Study on Consumer Preferences and the Willingness to Pay for Ecological Agricultural Product Traceability Technology: Evidence from Jiangxi Province China," IJERPH, MDPI, vol. 18(22), pages 1-13, November.
    13. Teck Ming Tan & Saila Saraniemi, 2023. "Trust in blockchain-enabled exchanges: Future directions in blockchain marketing," Journal of the Academy of Marketing Science, Springer, vol. 51(4), pages 914-939, July.
    14. Sachin Kumar Mangla & Yiğit Kazançoğlu & Abdullah Yıldızbaşı & Cihat Öztürk & Ahmet Çalık, 2022. "A conceptual framework for blockchain‐based sustainable supply chain and evaluating implementation barriers: A case of the tea supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3693-3716, December.
    15. Komulainen, Ruey & Nätti, Satu, 2023. "Barriers to blockchain adoption: Empirical observations from securities services value network," Journal of Business Research, Elsevier, vol. 159(C).
    16. Dehghani, Milad & William Kennedy, Ryan & Mashatan, Atefeh & Rese, Alexandra & Karavidas, Dionysios, 2022. "High interest, low adoption. A mixed-method investigation into the factors influencing organisational adoption of blockchain technology," Journal of Business Research, Elsevier, vol. 149(C), pages 393-411.
    17. Gajendra Liyanaarachchi & Giampaolo Viglia & Fidan Kurtaliqi, 2024. "Addressing challenges of digital transformation with modified blockchain," Post-Print hal-04440365, HAL.
    18. Seyyed-Alireza Radmanesh & Alireza Haji & Omid Fatahi Valilai, 2023. "Blockchain-Based Architecture for a Sustainable Supply Chain in Cloud Architecture," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    19. Chalmers, Dominic & Fisch, Christian & Matthews, Russell & Quinn, William & Recker, Jan, 2022. "Beyond the bubble: Will NFTs and digital proof of ownership empower creative industry entrepreneurs?," Journal of Business Venturing Insights, Elsevier, vol. 17(C).
    20. Tandon, Anushree & Kaur, Puneet & Mäntymäki, Matti & Dhir, Amandeep, 2021. "Blockchain applications in management: A bibliometric analysis and literature review," Technological Forecasting and Social Change, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:11:p:330-:d:971910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.