IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v6y2022i3p40-d846256.html
   My bibliography  Save this article

From Traditional Product Lifecycle Management Systems to Blockchain-Based Platforms

Author

Listed:
  • Mubashir Hayat

    (Chair of Production and Operations Management, Brandenburg University of Technology, 03046 Cottbus, Germany)

  • Herwig Winkler

    (Chair of Production and Operations Management, Brandenburg University of Technology, 03046 Cottbus, Germany)

Abstract

Background: Several product lifecycle management systems (PLMs) have been implemented in the industrial sector for managing the data of the product from the design up to the disposal or recycling stage. However, these PLMs face certain challenges in managing the complex and decentralized product lifecycles. Methods: To this aim, this work investigates the currently implemented PLMs used in industries through the exploration of various software reviews and selection websites. Accordingly, these existing PLMs are quantitatively compared and analyzed. Results: The analysis shows that most of the existing PLMs do not contain all the required features; therefore, industries integrate different software to create a full-fledged PLM system. However, this practice results in reducing the overall system efficiency. In this context, this paper assesses and recommends a blockchain-based innovative solution that overcomes the challenges of existing PLMs, hence increasing the overall system efficiency. Furthermore, this work argues, in a logical way, that the recommended blockchain-based platform provides a secure and connected infrastructure for data handling, processing, and storage at different stages of the product lifecycle. Conclusions: This work can be considered among the first to compare the currently implemented PLMs with a novel blockchain-based method. Thus, the stakeholders can utilize the outputs of this research in their analysis and decision-making processes for implementing the blockchain in their organizations.

Suggested Citation

  • Mubashir Hayat & Herwig Winkler, 2022. "From Traditional Product Lifecycle Management Systems to Blockchain-Based Platforms," Logistics, MDPI, vol. 6(3), pages 1-14, June.
  • Handle: RePEc:gam:jlogis:v:6:y:2022:i:3:p:40-:d:846256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/6/3/40/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/6/3/40/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abderahman Rejeb & John G. Keogh & Horst Treiblmaier, 2019. "Leveraging the Internet of Things and Blockchain Technology in Supply Chain Management," Future Internet, MDPI, vol. 11(7), pages 1-22, July.
    2. Moritz Berneis & Devis Bartsch & Herwig Winkler, 2021. "Applications of Blockchain Technology in Logistics and Supply Chain Management—Insights from a Systematic Literature Review," Logistics, MDPI, vol. 5(3), pages 1-15, June.
    3. Moritz Berneis & Herwig Winkler, 2021. "Value Proposition Assessment of Blockchain Technology for Luxury, Food, and Healthcare Supply Chains," Logistics, MDPI, vol. 5(4), pages 1-18, December.
    4. Yanling Chang & Eleftherios Iakovou & Weidong Shi, 2020. "Blockchain in global supply chains and cross border trade: a critical synthesis of the state-of-the-art, challenges and opportunities," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2082-2099, April.
    5. Jesse Yli-Huumo & Deokyoon Ko & Sujin Choi & Sooyong Park & Kari Smolander, 2016. "Where Is Current Research on Blockchain Technology?—A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-27, October.
    6. Antti Saaksvuori & Anselmi Immonen, 2008. "Product Lifecycle Management," Springer Books, Springer, number 978-3-540-78172-1, December.
    7. Bartsch, Devis & Winkler, Herwig, 2020. "Blockchain technology in Germany: An excerpt of real use cases in logistics industry," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Lo, volume 29, pages 699-735, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mubashir Hayat & Herwig Winkler, 2022. "An Analytic Hierarchy Process for Selection of Blockchain-Based Platform for Product Lifecycle Management," Sustainability, MDPI, vol. 14(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mubashir Hayat & Herwig Winkler, 2022. "An Analytic Hierarchy Process for Selection of Blockchain-Based Platform for Product Lifecycle Management," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    2. Bartsch, Devis & Winkler, Herwig, 2022. "Smart order as a new instrument for production control," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 149-175, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    3. Zhu, Qingyun & Bai, Chunguang & Sarkis, Joseph, 2022. "Blockchain technology and supply chains: The paradox of the atheoretical research discourse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Ieva Meidute-Kavaliauskiene & Amir Karbassi Yazdi & Amir Mehdiabadi, 2022. "Integration of Blockchain Technology and Prioritization of Deployment Barriers in the Blood Supply Chain," Logistics, MDPI, vol. 6(1), pages 1-16, March.
    5. Sharma, Mahak & Sehrawat, Rajat & Daim, Tugrul & Shaygan, Amir, 2021. "Technology assessment: Enabling Blockchain in hospitality and tourism sectors," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    6. Ulpan Tokkozhina & Ana Lucia Martins & Joao C. Ferreira, 2023. "Uncovering dimensions of the impact of blockchain technology in supply chain management," Operations Management Research, Springer, vol. 16(1), pages 99-125, March.
    7. Abderahman Rejeb & Karim Rejeb & Steve Simske & Horst Treiblmaier, 2021. "Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review," Logistics, MDPI, vol. 5(4), pages 1-28, October.
    8. Mohita Gangwar Sharma & Sunil Kumar, 2020. "The Implication of Blockchain as a Disruptive Technology for Construction Industry," IIM Kozhikode Society & Management Review, , vol. 9(2), pages 177-188, July.
    9. Yue Su & Kien Nguyen & Hiroo Sekiya, 2022. "A Comparison of Blockchain Recovery Time in Static and Mobile IoT-Blockchain Networks," Future Internet, MDPI, vol. 14(11), pages 1-20, November.
    10. Rita Maria Difrancesco & Purushottam Meena & Gopal Kumar, 2023. "How blockchain technology improves sustainable supply chain processes: a practical guide," Operations Management Research, Springer, vol. 16(2), pages 620-641, June.
    11. Amin Vafadarnikjoo & Hadi Badri Ahmadi & James J. H. Liou & Tiago Botelho & Konstantinos Chalvatzis, 2023. "Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process," Annals of Operations Research, Springer, vol. 327(1), pages 129-156, August.
    12. Martínez-Castañeda, Mónica & Feijoo, Claudio, 2023. "Use of blockchain in the agri-food value chain: State of the art in Spain and some lessons from the perspective of public support," Telecommunications Policy, Elsevier, vol. 47(6).
    13. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    14. Luisanna Cocco & Roberto Tonelli & Michele Marchesi, 2021. "Blockchain and Self Sovereign Identity to Support Quality in the Food Supply Chain," Future Internet, MDPI, vol. 13(12), pages 1-19, November.
    15. Seppo Kuula & Harri Haapasalo & Arto Tolonen, 2018. "Cost-efficient co-creation of knowledge intensive business services," Service Business, Springer;Pan-Pacific Business Association, vol. 12(4), pages 779-808, December.
    16. Dilupa Nakandala & Yung Po Tsang & Henry Lau & Carman Ka Man Lee, 2022. "An Industrial Blockchain-Based Multi-Criteria Decision Framework for Global Freight Management in Agricultural Supply Chains," Mathematics, MDPI, vol. 10(19), pages 1-23, September.
    17. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    18. Büttgen, Marion & al.,, 2021. "Blockchain in Service Management and Service Research - Developing a Research Agenda and Managerial Implications," SMR - Journal of Service Management Research, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 5(2), pages 71-102.
    19. Ximing Chen & Jie Shang & Muhammad Zada & Shagufta Zada & Xueqiang Ji & Heesup Han & Antonio Ariza-Montes & Jesús Ramírez-Sobrino, 2021. "Health Is Wealth: Study on Consumer Preferences and the Willingness to Pay for Ecological Agricultural Product Traceability Technology: Evidence from Jiangxi Province China," IJERPH, MDPI, vol. 18(22), pages 1-13, November.
    20. František Freiberg & David Michálek & Marek Nemec & Miroslav Žilka & George Cristian Gruia, 2011. "Survey Regarding The Level Of Product Lifecycle Management In Manufacturing Companies," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 116-120, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:6:y:2022:i:3:p:40-:d:846256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.