IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v11y2019i12p250-d293150.html
   My bibliography  Save this article

A Method of Node Layout of a Complex Network Based on Community Compression

Author

Listed:
  • Chengxiang Liu

    (Department of Space Information, Space Engineering University, Beijing 101416, China)

  • Wei Xiong

    (Science and Technology on Complex Electronic System Simulation Laboratory, Space Engineering University, Beijing 101416, China)

  • Xitao Zhang

    (Department of Space Command, Space Engineering University, Beijing 101416, China)

  • Zheng Liu

    (Department of Space Information, Space Engineering University, Beijing 101416, China)

Abstract

As the theory of complex networks is further studied, the scale of nodes in the network is increasing, which makes it difficult to find useful patterns from only the analysis of nodes. Therefore, this paper proposes a complex network node layout method based on community compression, which can effectively display the mesoscale structure characteristics of the network, making it more convenient for users to analyze the status and function of a single node or a class of nodes in the whole complex network. To begin with, the whole network is divided into communities with different granularity by the Louvain algorithm. Secondly, the method of nodes importance analysis based on topological potential theory is extended from the network to the community structure, and the internal nodes of the community are classified into three types, namely important nodes, relatively important nodes, and fringe nodes. Furthermore, a compression algorithm for the community structure is designed to realize the compression of the network by retaining important nodes and merging fringe nodes. Finally, the compression network is laid out by the traditional force-directed layout method. Experimental results show that, compared with the compression layout methods of a complex network based on degree or PageRank, the method in this paper can retain the integrated community composition and its internal structure, which is convenient for users to effectively analyze the topology structure of a complex network.

Suggested Citation

  • Chengxiang Liu & Wei Xiong & Xitao Zhang & Zheng Liu, 2019. "A Method of Node Layout of a Complex Network Based on Community Compression," Future Internet, MDPI, vol. 11(12), pages 1-12, December.
  • Handle: RePEc:gam:jftint:v:11:y:2019:i:12:p:250-:d:293150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/11/12/250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/11/12/250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    3. Supriya Tiwari & Pallavi Basu, 2024. "Quasi-randomization tests for network interference," Papers 2403.16673, arXiv.org.
    4. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    6. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    8. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Mario V. Tomasello & Mauro Napoletano & Antonios Garas & Frank Schweitzer, 2017. "The rise and fall of R&D networks," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(4), pages 617-646.
    10. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    11. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    12. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    13. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    14. Xiaokun Su & Chenrouyu Zheng & Yefei Yang & Yafei Yang & Wen Zhao & Yue Yu, 2022. "Spatial Structure and Development Patterns of Urban Traffic Flow Network in Less Developed Areas: A Sustainable Development Perspective," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    15. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    16. Vincenza Carchiolo & Marco Grassia & Michele Malgeri & Giuseppe Mangioni, 2022. "Co-Authorship Networks Analysis to Discover Collaboration Patterns among Italian Researchers," Future Internet, MDPI, vol. 14(6), pages 1-15, June.
    17. Gregory Gutin & Tomohiro Hirano & Sung-Ha Hwang & Philip R. Neary & Alexis Akira Toda, 2021. "The effect of social distancing on the reach of an epidemic in social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 629-647, July.
    18. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    19. Anna Concas & Lothar Reichel & Giuseppe Rodriguez & Yunzi Zhang, 2021. "Iterative Methods for the Computation of the Perron Vector of Adjacency Matrices," Mathematics, MDPI, vol. 9(13), pages 1-16, June.
    20. Arnauld Bessagnet & Joan Crespo & Jerome Vicente, 2023. "How is the literature on Digital Entrepreneurial Ecosystems structured? A socio-semantic network approach," Papers in Evolutionary Economic Geography (PEEG) 2320, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Oct 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:11:y:2019:i:12:p:250-:d:293150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.