Forecasting the Preparatory Phase of Induced Earthquakes by Recurrent Neural Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Phoebe M. R. DeVries & Fernanda Viégas & Martin Wattenberg & Brendan J. Meade, 2018. "Deep learning of aftershock patterns following large earthquakes," Nature, Nature, vol. 560(7720), pages 632-634, August.
- Shanker, M. & Hu, M. Y. & Hung, M. S., 1996. "Effect of data standardization on neural network training," Omega, Elsevier, vol. 24(4), pages 385-397, August.
- Laura Gulia & Stefan Wiemer, 2019. "Real-time discrimination of earthquake foreshocks and aftershocks," Nature, Nature, vol. 574(7777), pages 193-199, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Olgu Aydin & Serkan Ardiç & Hatice Kilar & Akiyuki Kawasaki, 2025. "Modelling the seismic activity of Kahramanmaraş, Türkiye with recurrent neural network (RNN) and long short-term memory (LSTM) methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(15), pages 18361-18390, August.
- Zhu, Jingbao & Sun, Wentao & Li, Shanyou & Yao, Kunpeng & Song, Jindong, 2024. "Threshold-based earthquake early warning for high-speed railways using deep learning," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Kun Shan & Yanhao Zheng & Wanqiang Cheng & Zhigang Shan & Yanjun Zhang, 2025. "Evaluation of Seismicity Induced by Geothermal Development Based on Artificial Neural Network," Energies, MDPI, vol. 18(15), pages 1-21, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Samuka Mohanty & Rajashree Dash, 2023. "A New Dual Normalization for Enhancing the Bitcoin Pricing Capability of an Optimized Low Complexity Neural Net with TOPSIS Evaluation," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Jingwei Li & Zizhan Zhang & Zhiguo Deng & Wei Zhan & Yunguo Chen & Wei Chen, 2025. "A layered segmentation method for fault geometry reconstruction: integrating surface traces and aftershock sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(14), pages 17025-17043, August.
- Shigeyuki Hamori & Takahiro Kume, 2018. "Artificial Intelligence And Economic Growth," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 256-278, December.
- Satoshi Matsumoto & Yoshihisa Iio & Shinichi Sakai & Aitaro Kato, 2024. "Strength dependency of frequency–magnitude distribution in earthquakes and implications for stress state criticality," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Marcus Herrmann & Ester Piegari & Warner Marzocchi, 2022. "Revealing the spatiotemporal complexity of the magnitude distribution and b-value during an earthquake sequence," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- C. Collettini & M. R. Barchi & N. Paola & F. Trippetta & E. Tinti, 2022. "Rock and fault rheology explain differences between on fault and distributed seismicity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
- Yunping Bai & Yifu Xu & Shifan Chen & Xiaotian Zhu & Shuai Wang & Sirui Huang & Yuhang Song & Yixuan Zheng & Zhihui Liu & Sim Tan & Roberto Morandotti & Sai T. Chu & Brent E. Little & David J. Moss & , 2025. "TOPS-speed complex-valued convolutional accelerator for feature extraction and inference," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Társilo Girona & Kyriaki Drymoni, 2024. "Abnormal low-magnitude seismicity preceding large-magnitude earthquakes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Qian, Cheng & Xu, Binghui & Chang, Liang & Sun, Bo & Feng, Qiang & Yang, Dezhen & Ren, Yi & Wang, Zili, 2021. "Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries," Energy, Elsevier, vol. 227(C).
- Apostolos Ampountolas, 2023. "Comparative Analysis of Machine Learning, Hybrid, and Deep Learning Forecasting Models Evidence from European Financial Markets and Bitcoins," Papers 2307.08853, arXiv.org.
- Dongdong Chen & Zhiqiang Wang & Zaisheng Jiang & Shengrong Xie & Zijian Li & Qiucheng Ye & Jingkun Zhu, 2023. "Research on J 2 Evolution Law and Control under the Condition of Internal Pressure Relief in Surrounding Rock of Deep Roadway," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
- Kasyful Qaedi & Mardina Abdullah & Khairul Adib Yusof & Masashi Hayakawa & Nur Fatin Irdina Zulhamidi, 2025. "Multi-class classification automated machine learning for predicting earthquakes using global geomagnetic field data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(12), pages 14531-14544, July.
- Matteo Taroni & Giorgio Vocalelli & Andrea De Polis, 2021. "Gutenberg–Richter B-Value Time Series Forecasting: A Weighted Likelihood Approach," Forecasting, MDPI, vol. 3(3), pages 1-9, August.
- Luke T. Woods & Zeeshan A. Rana, 2023. "Modelling Sign Language with Encoder-Only Transformers and Human Pose Estimation Keypoint Data," Mathematics, MDPI, vol. 11(9), pages 1-28, May.
- Luis Alberto Geraldo-Campos & Juan J. Soria & Tamara Pando-Ezcurra, 2022. "Machine Learning for Credit Risk in the Reactive Peru Program: A Comparison of the Lasso and Ridge Regression Models," Economies, MDPI, vol. 10(8), pages 1-21, July.
- Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
- P. Brondi & S. Gentili & R. Di Giovambattista, 2025. "Forecasting strong subsequent events in the Italian territory: a national and regional application for NESTOREv1.0," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(3), pages 3499-3531, February.
- Shihua Ren & Xiaomiao Jiao & Dezhi Zheng & Yaning Zhang & Heping Xie & Rui Zhang, 2025. "Impact of Carbon Neutrality Goals on China’s Coal Industry: Mechanisms and Evidence," Energies, MDPI, vol. 18(7), pages 1-21, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:3:y:2021:i:1:p:2-36:d:474465. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/gam/jforec/v3y2021i1p2-36d474465.html