IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p663-d76356.html
   My bibliography  Save this article

Thermoeconomic Modeling and Parametric Study of a Photovoltaic-Assisted 1 MW e Combined Cooling, Heating, and Power System

Author

Listed:
  • Alexandros Arsalis

    (Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
    FOSS Research Centre for Sustainable Energy, University of Cyprus, Nicosia 1678, Cyprus)

  • Andreas N. Alexandrou

    (Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
    FOSS Research Centre for Sustainable Energy, University of Cyprus, Nicosia 1678, Cyprus)

  • George E. Georghiou

    (FOSS Research Centre for Sustainable Energy, University of Cyprus, Nicosia 1678, Cyprus
    Department of Electrical and Computer Engineering, University of Cyprus, Nicosia 1678, Cyprus)

Abstract

In this study a small-scale, completely autonomous combined cooling, heating, and power (CCHP) system is coupled to a photovoltaic (PV) subsystem, to investigate the possibility of reducing fuel consumption. The CCHP system generates electrical energy with the use of a simple gas turbine cycle, with a rated nominal power output of 1 MW e . The nominal power output of the PV subsystem is examined in a parametric study, ranging from 0 to 600 kW e , to investigate which configuration results in a minimum lifecycle cost (LCC) for a system lifetime of 20 years of service. The load profile considered is applied for a complex of households in Nicosia, Cyprus. The solar data for the PV subsystem are taken on an hourly basis for a whole year. The results suggest that apart from economic benefits, the proposed system also results in high efficiency and reduced CO 2 emissions. The parametric study shows that the optimum PV capacity is 300 kW e . The minimum lifecycle cost for the PV-assisted CCHP system is found to be 3.509 million €, as compared to 3.577 million € for a system without a PV subsystem. The total cost for the PV subsystem is 547,445 €, while the total cost for operating the system (fuel) is 731,814 € (compared to 952,201 € for a CCHP system without PVs). Overall, the proposed system generates a total electrical energy output of 52,433 MWh (during its whole lifetime), which translates to a unit cost of electricity of 0.067 €/kWh.

Suggested Citation

  • Alexandros Arsalis & Andreas N. Alexandrou & George E. Georghiou, 2016. "Thermoeconomic Modeling and Parametric Study of a Photovoltaic-Assisted 1 MW e Combined Cooling, Heating, and Power System," Energies, MDPI, vol. 9(8), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:663-:d:76356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    2. Popli, Sahil & Rodgers, Peter & Eveloy, Valerie, 2012. "Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization," Applied Energy, Elsevier, vol. 93(C), pages 624-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arsalis, Alexandros & Alexandrou, Andreas N. & Georghiou, George E., 2018. "Thermoeconomic modeling of a completely autonomous, zero-emission photovoltaic system with hydrogen storage for residential applications," Renewable Energy, Elsevier, vol. 126(C), pages 354-369.
    2. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    3. Yunlong Ma & Suvash C. Saha & Wendy Miller & Lisa Guan, 2017. "Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings," Energies, MDPI, vol. 10(10), pages 1-27, September.
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Alexandros Arsalis & George E. Georghiou, 2018. "A Decentralized, Hybrid Photovoltaic-Solid Oxide Fuel Cell System for Application to a Commercial Building," Energies, MDPI, vol. 11(12), pages 1-20, December.
    6. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    7. Alexandros Arsalis & George E. Georghiou & Panos Papanastasiou, 2022. "Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems," Energies, MDPI, vol. 15(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    2. Wei, Maolin & Yuan, Weixing & Fu, Lin & Zhang, Shigang & Zhao, Xiling, 2018. "Summer performance analysis of coal-based CCHP with new configurations comparing with separate system," Energy, Elsevier, vol. 143(C), pages 104-113.
    3. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    4. Usón, Sergio & Kostowski, Wojciech J. & Stanek, Wojciech & Gazda, Wiesław, 2015. "Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels," Energy, Elsevier, vol. 92(P3), pages 308-319.
    5. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    6. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    7. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    8. Andrii Radchenko & Mykola Radchenko & Hanna Koshlak & Roman Radchenko & Serhiy Forduy, 2022. "Enhancing the Efficiency of Integrated Energy Systems by the Redistribution of Heat Based on Monitoring Data," Energies, MDPI, vol. 15(22), pages 1-18, November.
    9. Mykola Radchenko & Zongming Yang & Anatoliy Pavlenko & Andrii Radchenko & Roman Radchenko & Hanna Koshlak & Guozhi Bao, 2023. "Increasing the Efficiency of Turbine Inlet Air Cooling in Climatic Conditions of China through Rational Designing—Part 1: A Case Study for Subtropical Climate: General Approaches and Criteria," Energies, MDPI, vol. 16(17), pages 1-16, August.
    10. Chen, W.D. & Chua, K.J., 2022. "A novel and optimized operation strategy map for CCHP systems considering optimal thermal energy utilization," Energy, Elsevier, vol. 259(C).
    11. Zongming Yang & Mykola Radchenko & Andrii Radchenko & Dariusz Mikielewicz & Roman Radchenko, 2022. "Gas Turbine Intake Air Hybrid Cooling Systems and a New Approach to Their Rational Designing," Energies, MDPI, vol. 15(4), pages 1-18, February.
    12. Farahnak, Mehdi & Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi & Dashti, Farshad, 2015. "Optimal sizing of power generation unit capacity in ICE-driven CCHP systems for various residential building sizes," Applied Energy, Elsevier, vol. 158(C), pages 203-219.
    13. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    14. Deng, Yan & Zeng, Rong & Liu, Yicai, 2022. "A novel off-design model to optimize combined cooling, heating and power system with hybrid chillers for different operation strategies," Energy, Elsevier, vol. 239(PB).
    15. Ryszard Bartnik & Zbigniew Buryn & Anna Hnydiuk-Stefan & Marcin Szega & Tomasz Popławski, 2020. "Power and Frequency Control in the National Power System of the 370 MW Coal Fired Unit Superstructured with a Gas Turbine," Energies, MDPI, vol. 13(10), pages 1-35, May.
    16. Guillermo Rey & Carlos Ulloa & José Luís Míguez & Antón Cacabelos, 2016. "Suitability Assessment of an ICE-Based Micro-CCHP Unit in Different Spanish Climatic Zones: Application of an Experimental Model in Transient Simulation," Energies, MDPI, vol. 9(11), pages 1-13, November.
    17. Lazrak, Amine & Leconte, Antoine & Chèze, David & Fraisse, Gilles & Papillon, Philippe & Souyri, Bernard, 2015. "Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies," Applied Energy, Elsevier, vol. 158(C), pages 142-156.
    18. Perdichizzi, A. & Barigozzi, G. & Franchini, G. & Ravelli, S., 2015. "Peak shaving strategy through a solar combined cooling and power system in remote hot climate areas," Applied Energy, Elsevier, vol. 143(C), pages 154-163.
    19. Kim, Min-Hwi & Dong, Hae-Won & Park, Joon-Young & Jeong, Jae-Weon, 2016. "Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell," Applied Energy, Elsevier, vol. 180(C), pages 446-456.
    20. Ren, Fukang & Lin, Xiaozhen & Wei, Ziqing & Zhai, Xiaoqiang & Yang, Jianrong, 2022. "A novel planning method for design and dispatch of hybrid energy systems," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:663-:d:76356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.