IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p627-d75709.html
   My bibliography  Save this article

Techno-Economic Modeling and Analysis of Redox Flow Battery Systems

Author

Listed:
  • Jens Noack

    (Fraunhofer-Institute for Chemical Technology, Applied Electrochemistry, Joseph-von-Fraunhofer-Str. 7, Pfinztal 76327, Germany)

  • Lars Wietschel

    (Fraunhofer-Institute for Chemical Technology, Applied Electrochemistry, Joseph-von-Fraunhofer-Str. 7, Pfinztal 76327, Germany)

  • Nataliya Roznyatovskaya

    (Fraunhofer-Institute for Chemical Technology, Applied Electrochemistry, Joseph-von-Fraunhofer-Str. 7, Pfinztal 76327, Germany)

  • Karsten Pinkwart

    (Fraunhofer-Institute for Chemical Technology, Applied Electrochemistry, Joseph-von-Fraunhofer-Str. 7, Pfinztal 76327, Germany)

  • Jens Tübke

    (Fraunhofer-Institute for Chemical Technology, Applied Electrochemistry, Joseph-von-Fraunhofer-Str. 7, Pfinztal 76327, Germany)

Abstract

A techno-economic model was developed to investigate the influence of components on the system costs of redox flow batteries. Sensitivity analyses were carried out based on an example of a 10 kW/120 kWh vanadium redox flow battery system, and the costs of the individual components were analyzed. Particular consideration was given to the influence of the material costs and resistances of bipolar plates and energy storage media as well as voltages and electric currents. Based on the developed model, it was possible to formulate statements about the targeted optimization of a developed non-commercial vanadium redox flow battery system and general aspects for future developments of redox flow batteries.

Suggested Citation

  • Jens Noack & Lars Wietschel & Nataliya Roznyatovskaya & Karsten Pinkwart & Jens Tübke, 2016. "Techno-Economic Modeling and Analysis of Redox Flow Battery Systems," Energies, MDPI, vol. 9(8), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:627-:d:75709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jen-Yu Chen & Chin-Lung Hsieh & Ning-Yih Hsu & Yi-Sin Chou & Yong-Song Chen, 2014. "Determining the Limiting Current Density of Vanadium Redox Flow Batteries," Energies, MDPI, vol. 7(9), pages 1-11, September.
    2. Friederike E. L. Otto, 2016. "The art of attribution," Nature Climate Change, Nature, vol. 6(4), pages 342-343, April.
    3. Luca Petricca & Per Ohlckers & Xuyuan Chen, 2013. "The Future of Energy Storage Systems," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brenda Berenice Martinez Cantu & Peter Fischer & David Zitoun & Jens Tübke & Karsten Pinkwart, 2021. "In Situ Measurement of Localized Current Distribution in H 2 -Br 2 Redox Flow Batteries," Energies, MDPI, vol. 14(16), pages 1-12, August.
    2. Kendall Mongird & Vilayanur Viswanathan & Patrick Balducci & Jan Alam & Vanshika Fotedar & Vladimir Koritarov & Boualem Hadjerioua, 2020. "An Evaluation of Energy Storage Cost and Performance Characteristics," Energies, MDPI, vol. 13(13), pages 1-53, June.
    3. Linda Barelli & Gianni Bidini & Paolo Cherubini & Andrea Micangeli & Dario Pelosi & Carlo Tacconelli, 2019. "How Hybridization of Energy Storage Technologies Can Provide Additional Flexibility and Competitiveness to Microgrids in the Context of Developing Countries," Energies, MDPI, vol. 12(16), pages 1-22, August.
    4. Hina Fathima A & Kaliannan Palanisamy & Sanjeevikumar Padmanaban & Umashankar Subramaniam, 2018. "Intelligence-Based Battery Management and Economic Analysis of an Optimized Dual-Vanadium Redox Battery (VRB) for a Wind-PV Hybrid System," Energies, MDPI, vol. 11(10), pages 1-18, October.
    5. Henni, Sarah & Schäffer, Michael & Fischer, Peter & Weinhardt, Christof & Staudt, Philipp, 2023. "Bottom-up system modeling of battery storage requirements for integrated renewable energy systems," Applied Energy, Elsevier, vol. 333(C).
    6. Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
    7. Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Julian Marius Müller & Raphael Kunderer, 2019. "Ex-Ante Prediction of Disruptive Innovation: The Case of Battery Technologies," Sustainability, MDPI, vol. 11(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luke J. Harrington, 2017. "Investigating differences between event-as-class and probability density-based attribution statements with emerging climate change," Climatic Change, Springer, vol. 141(4), pages 641-654, April.
    2. Giovanni Antonio Cossiga, 2017. "Instability of Economic Systems: Signals, Asymmetric Reactions, Corrections," Studies in Media and Communication, Redfame publishing, vol. 5(2), pages 85-104, December.
    3. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    4. Juan Pedro Aznar & Josep Maria Sayeras & Jorge Galiana & Alba Rocafort, 2016. "Sustainability Commitment, New Competitors’ Presence, and Hotel Performance: The Hotel Industry in Barcelona," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
    5. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    6. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    7. Rasmus Karlsson, 2021. "Learning in the Anthropocene," Social Sciences, MDPI, vol. 10(6), pages 1-11, June.
    8. Darshana Rajapaksa & Moinul Islam & Shunsuke Managi, 2018. "Pro-Environmental Behavior: The Role of Public Perception in Infrastructure and the Social Factors for Sustainable Development," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
    9. Mohammad Amiri & Ahmad Khosravi & Reza Chaman & Zakieh Sadeghi & Mehdi Raei & MohammadAli Jahanitiji & Fardin Mehrabian, 2016. "Social Consequences of Infertility on Families in Iran," Global Journal of Health Science, Canadian Center of Science and Education, vol. 8(5), pages 1-89, May.
    10. Eniola. A. Sokefun & Oluseyi. O. Oduyoye, 2018. "Corporate Social Responsibility as Strategy for Environmental Preservation and Control of Youth Restiveness: The Experience from South-West Nigeria," Business and Management Studies, Redfame publishing, vol. 4(2), pages 45-54, June.
    11. Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
    12. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    13. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    14. Kim, Jungmyung & Park, Heesung, 2019. "Electrokinetic parameters of a vanadium redox flow battery with varying temperature and electrolyte flow rate," Renewable Energy, Elsevier, vol. 138(C), pages 284-291.
    15. Maruyama Rentschler,Jun Erik & Avner,Paolo & Marconcini,Mattia & Su,Rui & Strano,Emanuele & Bernard,Louise Alice Karine & Riom,Capucine Anne Veronique & Hallegatte,Stephane, 2022. "Rapid Urban Growth in Flood Zones : Global Evidence since 1985," Policy Research Working Paper Series 10014, The World Bank.
    16. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    17. Krishnan, Venkat & Das, Trishna, 2015. "Optimal allocation of energy storage in a co-optimized electricity market: Benefits assessment and deriving indicators for economic storage ventures," Energy, Elsevier, vol. 81(C), pages 175-188.
    18. Florian Diekert & Daniel Heyen & Frikk Nesje & Soheil Shayegh, 2024. "Balancing the Risk of Tipping: Early Warning Systems from Detection to Management," CESifo Working Paper Series 10892, CESifo.
    19. Simona Ibba & Filippo Eros Pani, 2016. "Digital Libraries: The Challenge of Integrating Instagram with a Taxonomy for Content Management," Future Internet, MDPI, vol. 8(2), pages 1-15, May.
    20. Brinkerink, Maarten & Gallachóir, Brian Ó & Deane, Paul, 2019. "A comprehensive review on the benefits and challenges of global power grids and intercontinental interconnectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 274-287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:627-:d:75709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.