IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i5p372-d70154.html
   My bibliography  Save this article

Black Start Strategy for PV-ESS Multi-Microgrids with Three-Phase/Single-Phase Architecture

Author

Listed:
  • Zhirong Xu

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China
    Guangdong Key Laboratory of Clean Energy Technology, Guangzhou 511458, China)

  • Ping Yang

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China
    Guangdong Key Laboratory of Clean Energy Technology, Guangzhou 511458, China
    National-Local Joint Engineering Laboratory for Wind Power Control and Integration Technology, South China University of Technology, Guangzhou 511458, China)

  • Zhiji Zeng

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Jiajun Peng

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Zhuoli Zhao

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

Abstract

With the rapid development of microgrids (MGs) in recent years, it is anticipated that combinations of multiple microgrids—multi-microgrids (MMGs)—will gradually become a new form of power grid. A safe and efficient black start strategy for MMGs is in urgent demand because of their complicated structure and control systems. In this paper, first, we analyze the topology and control system of residential-type MMGs with three-phase/single-phase (TP/SP) architecture. Second, a black start strategy based on a hierarchical control scheme is presented, including the selection strategy for the main power supply and master microgrid, the stand-alone operation strategy, and the grid-connected operation strategy. After the selection of the main power supplies, the master MG is determined. Hereby, all sub-microgrids (SMGs) execute the stand-alone algorithm. When the synchronous connection condition is satisfied, the slave SMGs connect to the master MG who provides the voltage and frequency support. Meanwhile, the control algorithm transfers to the grid-connected algorithm, with the grid dispatching value set to zero. Finally, experimental results from the MMG experimental setup in the Clean Energy Technology Laboratory (CETLAB) are presented to verify the effectiveness and feasibility of the proposed black start strategy.

Suggested Citation

  • Zhirong Xu & Ping Yang & Zhiji Zeng & Jiajun Peng & Zhuoli Zhao, 2016. "Black Start Strategy for PV-ESS Multi-Microgrids with Three-Phase/Single-Phase Architecture," Energies, MDPI, vol. 9(5), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:372-:d:70154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/5/372/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/5/372/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hak-Man Kim & Tetsuo Kinoshita & Myong-Chul Shin, 2010. "A Multiagent System for Autonomous Operation of Islanded Microgrids Based on a Power Market Environment," Energies, MDPI, vol. 3(12), pages 1-19, December.
    2. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim & Yong Hoon Im & Jae Yong Lee, 2015. "Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations," Energies, MDPI, vol. 8(8), pages 1-20, August.
    3. Zhe Xiao & Tinghua Li & Ming Huang & Jihong Shi & Jingjing Yang & Jiang Yu & Wei Wu, 2010. "Hierarchical MAS Based Control Strategy for Microgrid," Energies, MDPI, vol. 3(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Tang & Jianfeng Dai & Qi Wang & Yixin Feng, 2017. "Frequency Control Strategy for Black Starts via PMSG-Based Wind Power Generation," Energies, MDPI, vol. 10(3), pages 1-14, March.
    2. Changcheng Li & Jinghan He & Pei Zhang & Yin Xu, 2017. "A Novel Sectionalizing Method for Power System Parallel Restoration Based on Minimum Spanning Tree," Energies, MDPI, vol. 10(7), pages 1-21, July.
    3. Jongbok Baek & Wooin Choi & Suyong Chae, 2017. "Distributed Control Strategy for Autonomous Operation of Hybrid AC/DC Microgrid," Energies, MDPI, vol. 10(3), pages 1-16, March.
    4. Xiangwu Yan & Yang Cui & Sen Cui, 2019. "Control Method of Parallel Inverters with Self-Synchronizing Characteristics in Distributed Microgrid," Energies, MDPI, vol. 12(20), pages 1-20, October.
    5. Yao Liu & Xiaochao Hou & Xiaofeng Wang & Chao Lin & Josep M. Guerrero, 2016. "A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode," Energies, MDPI, vol. 9(8), pages 1-15, August.
    6. Min-gang Tan & Yi Tang & Chaohai Zhang, 2019. "PMSG-Based Black-Start Technology and Its Field Tests," Energies, MDPI, vol. 12(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi Wu & Ping Jiang & Jing Lu, 2014. "Multiagent-Based Distributed Load Shedding for Islanded Microgrids," Energies, MDPI, vol. 7(9), pages 1-13, September.
    2. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    3. Hak-Man Kim & Yujin Lim & Tetsuo Kinoshita, 2012. "An Intelligent Multiagent System for Autonomous Microgrid Operation," Energies, MDPI, vol. 5(9), pages 1-16, September.
    4. Luis Hernandez & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio J. Sanchez-Esguevillas & Jaime Lloret, 2013. "Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks," Energies, MDPI, vol. 6(3), pages 1-24, March.
    5. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim, 2016. "Optimal Electric and Heat Energy Management of Multi-Microgrids with Sequentially-Coordinated Operations," Energies, MDPI, vol. 9(6), pages 1-18, June.
    6. Ming-Tse Kuo & Shiue-Der Lu, 2013. "Design and Implementation of Real-Time Intelligent Control and Structure Based on Multi-Agent Systems in Microgrids," Energies, MDPI, vol. 6(11), pages 1-15, November.
    7. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    8. Hong-Chao Gao & Joon-Ho Choi & Sang-Yun Yun & Seon-Ju Ahn, 2020. "A New Power Sharing Scheme of Multiple Microgrids and an Iterative Pairing-Based Scheduling Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    9. Im, Yong-Hoon & Liu, Jie, 2018. "Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model," Energy, Elsevier, vol. 153(C), pages 988-999.
    10. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    11. Khaizaran Abdulhussein Al Sumarmad & Nasri Sulaiman & Noor Izzri Abdul Wahab & Hashim Hizam, 2022. "Microgrid Energy Management System Based on Fuzzy Logic and Monitoring Platform for Data Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
    12. Hua Han & Lang Li & Lina Wang & Mei Su & Yue Zhao & Josep M. Guerrero, 2017. "A Novel Decentralized Economic Operation in Islanded AC Microgrids," Energies, MDPI, vol. 10(6), pages 1-18, June.
    13. Tsuguhiro Takuno & Yutaro Kitamori & Ryo Takahashi & Takashi Hikihara, 2011. "AC Power Routing System in Home Based on Demand and Supply Utilizing Distributed Power Sources," Energies, MDPI, vol. 4(5), pages 1-10, April.
    14. Yao Liu & Xiaochao Hou & Xiaofeng Wang & Chao Lin & Josep M. Guerrero, 2016. "A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode," Energies, MDPI, vol. 9(8), pages 1-15, August.
    15. Wei-Tzer Huang & Tsai-Hsiang Chen & Hong-Ting Chen & Jhih-Siang Yang & Kuo-Lung Lian & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2015. "A Two-stage Optimal Network Reconfiguration Approach for Minimizing Energy Loss of Distribution Networks Using Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 8(12), pages 1-17, December.
    16. Van-Hai Bui & Akhtar Hussain & Hak-Man Kim, 2017. "Diffusion Strategy-Based Distributed Operation of Microgrids Using Multiagent System," Energies, MDPI, vol. 10(7), pages 1-21, July.
    17. Manbachi, Moein & Farhangi, Hassan & Palizban, Ali & Arzanpour, Siamak, 2016. "Smart grid adaptive energy conservation and optimization engine utilizing Particle Swarm Optimization and Fuzzification," Applied Energy, Elsevier, vol. 174(C), pages 69-79.
    18. Khan, Muhammad Waseem & Wang, Jie, 2017. "The research on multi-agent system for microgrid control and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1399-1411.
    19. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim & Yong-Hoon Im & Jae-Yong Lee, 2017. "Optimal Energy Management of Combined Cooling, Heat and Power in Different Demand Type Buildings Considering Seasonal Demand Variations," Energies, MDPI, vol. 10(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:372-:d:70154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.