IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2144-d237200.html
   My bibliography  Save this article

PMSG-Based Black-Start Technology and Its Field Tests

Author

Listed:
  • Min-gang Tan

    (College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Yi Tang

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Chaohai Zhang

    (College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract

It is of great importance for power grids to have black-start capability for rapid recovery, and there is great theoretical significance and practical application value in studying how to use wind farms as the black-start power supply source for power grids with large-scale renewable energy generation. In this paper, a black-start scheme using a permanent-magnet synchronous generator (PMSG)-based wind farm as black-start power supply source is formulated. First, a diesel generator is used as an external supporting power supply for the self-start of a wind power unit (WPU). Then, after all the planned WPUs operate normally, the wind farm with the diesel generator and static var generator (SVG) is used to black start the simulated auxiliary load of a thermal power plant. A field test of the proposed black-start scheme is carried out on an actual wind farm in Jiangsu Province (China). The results of the field test show that wind farms can act as a black-start power supply source for the grid after appropriate technological transformation.

Suggested Citation

  • Min-gang Tan & Yi Tang & Chaohai Zhang, 2019. "PMSG-Based Black-Start Technology and Its Field Tests," Energies, MDPI, vol. 12(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2144-:d:237200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cuiping Li & Shining Zhang & Jiaxing Zhang & Jun Qi & Junhui Li & Qi Guo & Hongfei You, 2018. "Method for the Energy Storage Configuration of Wind Power Plants with Energy Storage Systems used for Black-Start," Energies, MDPI, vol. 11(12), pages 1-16, December.
    2. Yi Tang & Jianfeng Dai & Qi Wang & Yixin Feng, 2017. "Frequency Control Strategy for Black Starts via PMSG-Based Wind Power Generation," Energies, MDPI, vol. 10(3), pages 1-14, March.
    3. Zhirong Xu & Ping Yang & Zhiji Zeng & Jiajun Peng & Zhuoli Zhao, 2016. "Black Start Strategy for PV-ESS Multi-Microgrids with Three-Phase/Single-Phase Architecture," Energies, MDPI, vol. 9(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan S Hayajneh & Maximiliano Lainfiesta Herrera & Xuewei Zhang, 2021. "Design of combined stationary and mobile battery energy storage systems," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-21, December.
    2. Marija Miletić & Hrvoje Pandžić & Dechang Yang, 2020. "Operating and Investment Models for Energy Storage Systems," Energies, MDPI, vol. 13(18), pages 1-33, September.
    3. Yao Liu & Xiaochao Hou & Xiaofeng Wang & Chao Lin & Josep M. Guerrero, 2016. "A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode," Energies, MDPI, vol. 9(8), pages 1-15, August.
    4. Jongbok Baek & Wooin Choi & Suyong Chae, 2017. "Distributed Control Strategy for Autonomous Operation of Hybrid AC/DC Microgrid," Energies, MDPI, vol. 10(3), pages 1-16, March.
    5. Changcheng Li & Jinghan He & Pei Zhang & Yin Xu, 2017. "A Novel Sectionalizing Method for Power System Parallel Restoration Based on Minimum Spanning Tree," Energies, MDPI, vol. 10(7), pages 1-21, July.
    6. Xiangwu Yan & Yang Cui & Sen Cui, 2019. "Control Method of Parallel Inverters with Self-Synchronizing Characteristics in Distributed Microgrid," Energies, MDPI, vol. 12(20), pages 1-20, October.
    7. Danilo Herrera & Thiago Tricarico & Diego Oliveira & Mauricio Aredes & Eduardo Galván-Díez & Juan M. Carrasco, 2022. "Advanced Local Grid Control System for Offshore Wind Turbines with the Diode-Based Rectifier HVDC Link Implemented in a True Scalable Test Bench," Energies, MDPI, vol. 15(16), pages 1-21, August.
    8. Yi Tang & Jianfeng Dai & Qi Wang & Yixin Feng, 2017. "Frequency Control Strategy for Black Starts via PMSG-Based Wind Power Generation," Energies, MDPI, vol. 10(3), pages 1-14, March.
    9. Yi Tang & Jianfeng Dai & Jia Ning & Jie Dang & Yan Li & Xinshou Tian, 2017. "An Extended System Frequency Response Model Considering Wind Power Participation in Frequency Regulation," Energies, MDPI, vol. 10(11), pages 1-18, November.
    10. Ning Li & Fuxing He & Wentao Ma, 2019. "Wind Power Prediction Based on Extreme Learning Machine with Kernel Mean p -Power Error Loss," Energies, MDPI, vol. 12(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2144-:d:237200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.