IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p948-d104076.html
   My bibliography  Save this article

A Novel Sectionalizing Method for Power System Parallel Restoration Based on Minimum Spanning Tree

Author

Listed:
  • Changcheng Li

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China; 12117367@bjtu.edu.cn (C.L.); jhhe@bjtu.edu.cn (J.H.); peizhang@bjtu.edu.cn (P.Z.))

  • Jinghan He

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China; 12117367@bjtu.edu.cn (C.L.); jhhe@bjtu.edu.cn (J.H.); peizhang@bjtu.edu.cn (P.Z.))

  • Pei Zhang

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China; 12117367@bjtu.edu.cn (C.L.); jhhe@bjtu.edu.cn (J.H.); peizhang@bjtu.edu.cn (P.Z.))

  • Yin Xu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China; 12117367@bjtu.edu.cn (C.L.); jhhe@bjtu.edu.cn (J.H.); peizhang@bjtu.edu.cn (P.Z.))

Abstract

Parallel restoration is a way to accelerate the black-start procedure of power systems following a blackout. An efficient sectionalizing scheme can reduce the restoration time of a system, taking into account the black-start ability, generation-load balance of subsystems, restoration time of branches, start-up time of generating units, and effects of dispatchable loads and faulted devices. Solving the sectionalizing problem is challenging since it needs to handle a large number of Boolean variables corresponding to the branches and nonlinear constraints associated with system topology. This paper investigates power system sectionalizing problem for parallel restoration to minimize the system restoration time (SRT). A novel sectionalizing method considering the restoration of generating units and network branches is proposed. Firstly, the minimum spanning tree (MST) algorithm is used to determine the skeleton network of a power system. Secondly, the number of subsystems is determined according to the number of black-start units. Based on the skeleton network, candidate boundary lines among subsystems are identified. Then, constraints are evaluated to identify feasible sectionalizing schemes. Except commonly used constraints on power balancing and black-start units, this paper also considers using dispatchable loads to meet the minimum output requirements of generating units. Finally, the sectionalizing scheme with the minimum SRT is selected as the final solution. The effectiveness of the proposed method is validated by the IEEE 39-bus and 118-bus test systems. The simulation results indicate that the proposed method can balance the restoration time of subsystems and minimize the SRT.

Suggested Citation

  • Changcheng Li & Jinghan He & Pei Zhang & Yin Xu, 2017. "A Novel Sectionalizing Method for Power System Parallel Restoration Based on Minimum Spanning Tree," Energies, MDPI, vol. 10(7), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:948-:d:104076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Chih-Ming & Ou, Ting-Chia & Lu, Kai-Hung, 2013. "Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system," Energy, Elsevier, vol. 50(C), pages 270-279.
    2. Kaiwen Zeng & Jinyu Wen & Longpeng Ma & Shijie Cheng & En Lu & Ning Wang, 2014. "Fast Cut Back Thermal Power Plant Load Rejection and Black Start Field Test Analysis," Energies, MDPI, vol. 7(5), pages 1-21, April.
    3. Zhirong Xu & Ping Yang & Zhiji Zeng & Jiajun Peng & Zhuoli Zhao, 2016. "Black Start Strategy for PV-ESS Multi-Microgrids with Three-Phase/Single-Phase Architecture," Energies, MDPI, vol. 9(5), pages 1-14, May.
    4. Ting-Chia Ou & Wei-Fu Su & Xian-Zong Liu & Shyh-Jier Huang & Te-Yu Tai, 2016. "A Modified Bird-Mating Optimization with Hill-Climbing for Connection Decisions of Transformers," Energies, MDPI, vol. 9(9), pages 1-12, August.
    5. Yazhou Jiang & Chen-Ching Liu & Yin Xu, 2016. "Smart Distribution Systems," Energies, MDPI, vol. 9(4), pages 1-20, April.
    6. Paulo Murinelli Pesoti & Eliane Valença De Lorenci & Antonio Carlos Zambroni de Souza & Kwok Lun Lo & Benedito Isaias Lima Lopes, 2017. "Robustness Area Technique Developing Guidelines for Power System Restoration," Energies, MDPI, vol. 10(1), pages 1-16, January.
    7. Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
    8. Ting-Chia Ou & Kai-Hung Lu & Chiou-Jye Huang, 2017. "Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller)," Energies, MDPI, vol. 10(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping Jiang & Qiwei Chen, 2018. "An Optimal Source-Load Coordinated Restoration Method Considering Double Uncertainty," Energies, MDPI, vol. 11(3), pages 1-18, March.
    2. Francisco Quinteros & Diego Carrión & Manuel Jaramillo, 2022. "Optimal Power Systems Restoration Based on Energy Quality and Stability Criteria," Energies, MDPI, vol. 15(6), pages 1-23, March.
    3. Jing Wang & Longhua Mu & Fan Zhang & Xin Zhang, 2017. "A Parallel Restoration for Black Start of Microgrids Considering Characteristics of Distributed Generations," Energies, MDPI, vol. 11(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Wang & Jialiang Yi & Mansoureh Zangiabadi & Pádraig Lyons & Phil Taylor, 2017. "Evaluation of Voltage Control Approaches for Future Smart Distribution Networks," Energies, MDPI, vol. 10(8), pages 1-17, August.
    2. Andrés Henao-Muñoz & Andrés Saavedra-Montes & Carlos Ramos-Paja, 2018. "Optimal Power Dispatch of Small-Scale Standalone Microgrid Located in Colombian Territory," Energies, MDPI, vol. 11(7), pages 1-20, July.
    3. Carlos Robles Algarín & John Taborda Giraldo & Omar Rodríguez Álvarez, 2017. "Fuzzy Logic Based MPPT Controller for a PV System," Energies, MDPI, vol. 10(12), pages 1-18, December.
    4. Mohammed Elsayed Lotfy & Tomonobu Senjyu & Mohammed Abdel-Fattah Farahat & Amal Farouq Abdel-Gawad & Hidehito Matayoshi, 2017. "A Polar Fuzzy Control Scheme for Hybrid Power System Using Vehicle-To-Grid Technique," Energies, MDPI, vol. 10(8), pages 1-25, July.
    5. Hongyue Li & Xihuai Wang & Jianmei Xiao, 2018. "Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems," Energies, MDPI, vol. 11(7), pages 1-19, June.
    6. Chen, J.J. & Zhao, Y.L. & Peng, K. & Wu, P.Z., 2017. "Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties," Energy, Elsevier, vol. 141(C), pages 1969-1981.
    7. Jaewan Suh & Sungchul Hwang & Gilsoo Jang, 2017. "Development of a Transmission and Distribution Integrated Monitoring and Analysis System for High Distributed Generation Penetration," Energies, MDPI, vol. 10(9), pages 1-15, August.
    8. Qinliang Tan & Yihong Ding & Yimei Zhang, 2017. "Optimization Model of an Efficient Collaborative Power Dispatching System for Carbon Emissions Trading in China," Energies, MDPI, vol. 10(9), pages 1-19, September.
    9. Wang, Jianzhou & Yang, Wendong & Du, Pei & Li, Yifan, 2018. "Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system," Energy, Elsevier, vol. 148(C), pages 59-78.
    10. Reza Sirjani, 2017. "Optimal Capacitor Placement in Wind Farms by Considering Harmonics Using Discrete Lightning Search Algorithm," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    11. Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
    12. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    13. Sarid, A. & Tzur, M., 2018. "The multi-scale generation and transmission expansion model," Energy, Elsevier, vol. 148(C), pages 977-991.
    14. Marcolino Díaz-Araujo & Aurelio Medina & Rafael Cisneros-Magaña & Amner Ramírez, 2018. "Periodic Steady State Assessment of Microgrids with Photovoltaic Generation Using Limit Cycle Extrapolation and Cubic Splines," Energies, MDPI, vol. 11(8), pages 1-16, August.
    15. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.
    16. Hu, Luoke & Liu, Ying & Lohse, Niels & Tang, Renzhong & Lv, Jingxiang & Peng, Chen & Evans, Steve, 2017. "Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed," Energy, Elsevier, vol. 139(C), pages 935-946.
    17. Geng, Zhiqiang & Li, Yanan & Han, Yongming & Zhu, Qunxiong, 2018. "A novel self-organizing cosine similarity learning network: An application to production prediction of petrochemical systems," Energy, Elsevier, vol. 142(C), pages 400-410.
    18. Deockho Kim & Jin Hur, 2017. "Stochastic Prediction of Wind Generating Resources Using the Enhanced Ensemble Model for Jeju Island’s Wind Farms in South Korea," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
    19. Qian Liu & Rui Wang & Yan Zhang & Guohua Wu & Jianmai Shi, 2018. "An Optimal and Distributed Demand Response Strategy for Energy Internet Management," Energies, MDPI, vol. 11(1), pages 1-16, January.
    20. Yuan Hong & Shengbin Wang & Ziyue Huang, 2017. "Efficient Energy Consumption Scheduling: Towards Effective Load Leveling," Energies, MDPI, vol. 10(1), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:948-:d:104076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.