IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i4p247-d66684.html
   My bibliography  Save this article

Biochar as Additive in Biogas-Production from Bio-Waste

Author

Listed:
  • Daniel Meyer-Kohlstock

    (Biotechnology in Resources Management, Bauhaus-Universität Weimar, Coudraystr. 7, Weimar 99423, Germany)

  • Thomas Haupt

    (Biotechnology in Resources Management, Bauhaus-Universität Weimar, Coudraystr. 7, Weimar 99423, Germany)

  • Erik Heldt

    (Biotechnology in Resources Management, Bauhaus-Universität Weimar, Coudraystr. 7, Weimar 99423, Germany)

  • Nils Heldt

    (Biotechnology in Resources Management, Bauhaus-Universität Weimar, Coudraystr. 7, Weimar 99423, Germany)

  • Eckhard Kraft

    (Biotechnology in Resources Management, Bauhaus-Universität Weimar, Coudraystr. 7, Weimar 99423, Germany)

Abstract

Previous publications about biochar in anaerobic digestion show encouraging results with regard to increased biogas yields. This work investigates such effects in a solid-state fermentation of bio-waste. Unlike in previous trials, the influence of biochar is tested with a setup that simulates an industrial-scale biogas plant. Both the biogas and the methane yield increased around 5% with a biochar addition of 5%—based on organic dry matter biochar to bio-waste. An addition of 10% increased the yield by around 3%. While scaling effects prohibit a simple transfer of the results to industrial-scale plants, and although the certainty of the results is reduced by the heterogeneity of the bio-waste, further research in this direction seems promising.

Suggested Citation

  • Daniel Meyer-Kohlstock & Thomas Haupt & Erik Heldt & Nils Heldt & Eckhard Kraft, 2016. "Biochar as Additive in Biogas-Production from Bio-Waste," Energies, MDPI, vol. 9(4), pages 1-10, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:4:p:247-:d:66684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/4/247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/4/247/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    2. Jacek Łyczko & Jacek A. Koziel & Chumki Banik & Andrzej Białowiec, 2021. "The Proof-of-Concept: The Transformation of Naphthalene and Its Derivatives into Decalin and Its Derivatives during Thermochemical Processing of Sewage Sludge," Energies, MDPI, vol. 14(20), pages 1-11, October.
    3. Freitas, F.F. & Furtado, A.C. & Piñas, J.A.V. & Venturini, O.J. & Barros, R.M. & Lora, E.E.S., 2022. "Holistic Life Cycle Assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive," Energy, Elsevier, vol. 261(PB).
    4. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Salehiyoun, Ahmad Reza & Zilouei, Hamid & Safari, Mohammad & Di Maria, Francesco & Samadi, Seyed Hashem & Norouzi, Omid, 2022. "An investigation for improving dry anaerobic digestion of municipal solid wastes by adding biochar derived from gasification of wood pellets," Renewable Energy, Elsevier, vol. 186(C), pages 1-9.
    6. Song, Jinghui & Wang, Ying & Zhang, Siqi & Song, Yanling & Xue, Shengrong & Liu, Le & Lvy, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2021. "Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Marta Dudek & Kacper Świechowski & Piotr Manczarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    9. D’ Silva, Tinku Casper & Isha, Adya & Chandra, Ram & Vijay, Virendra Kumar & Subbarao, Paruchuri Mohan V. & Kumar, Ritunesh & Chaudhary, Ved Prakash & Singh, Harjit & Khan, Abid Ali & Tyagi, Vinay Kum, 2021. "Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Safaa Ragab & Mohamed A. El-Nemr & Antonio Pantaleo, 2021. "Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe 2 O 3 NPs on Biogas Production from Red Algae Pterocladia capillacea," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    11. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    13. Lü, Fan & Hua, Zhang & Shao, Liming & He, Pinjing, 2018. "Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances," Renewable Energy, Elsevier, vol. 124(C), pages 202-211.
    14. Liang Meng & Ahmed Alengebawy & Ping Ai & Keda Jin & Mengdi Chen & Yulong Pan, 2020. "Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China," Energies, MDPI, vol. 13(14), pages 1-19, July.
    15. Okoro-Shekwaga, Cynthia Kusin & Ross, Andrew Barry & Camargo-Valero, Miller Alonso, 2019. "Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis," Applied Energy, Elsevier, vol. 254(C).
    16. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    17. Renjun Ruan & Jiashun Cao & Chao Li & Di Zheng & Jingyang Luo, 2017. "The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester," Energies, MDPI, vol. 10(2), pages 1-19, February.
    18. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    19. Krystyna Lelicińska-Serafin & Piotr Manczarski & Anna Rolewicz-Kalińska, 2023. "An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy," Energies, MDPI, vol. 16(4), pages 1-13, February.
    20. Jan Sprafke & Vicky Shettigondahalli Ekanthalu & Michael Nelles, 2020. "Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions," Sustainability, MDPI, vol. 12(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:4:p:247-:d:66684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.