IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i5p3148-3178d35981.html
   My bibliography  Save this article

Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle

Author

Listed:
  • Tobias Nüesch

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland)

  • Alberto Cerofolini

    (Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy)

  • Giorgio Mancini

    (Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy)

  • Nicolò Cavina

    (Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy)

  • Christopher Onder

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland)

  • Lino Guzzella

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland)

Abstract

Motivated by the fact that the real driving NOx emissions (RDE) of conventional diesel vehicles can exceed the legislation norms by far, a concept for the control of RDE with a diesel parallel hybrid electric vehicle (HEV) is proposed. By extending the well-known equivalent consumption minimization strategy (ECMS), the power split degree of freedom is used to control the NOx emissions and the battery state of charge (SOC) simultaneously. Through an appropriate formulation of the problem, the feedback control is shown to be separable into two dependent PI controllers. By hardware-in-the-loop (HIL) experiments, as well as by simulations, the proposed method is shown to minimize the fuel consumption while tracking a given reference trajectory for both the NOx emissions and the battery SOC.

Suggested Citation

  • Tobias Nüesch & Alberto Cerofolini & Giorgio Mancini & Nicolò Cavina & Christopher Onder & Lino Guzzella, 2014. "Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle," Energies, MDPI, vol. 7(5), pages 1-31, May.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:3148-3178:d:35981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/5/3148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/5/3148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeongbin Lee & Jaeshin Yi & Chee Burm Shin & Seung Ho Yu & Won Il Cho, 2013. "Modeling the Effects of the Cathode Composition of a Lithium Iron Phosphate Battery on the Discharge Behavior," Energies, MDPI, vol. 6(11), pages 1-12, October.
    2. Ravi Shankar & James Marco & Francis Assadian, 2012. "The Novel Application of Optimization and Charge Blended Energy Management Control for Component Downsizing within a Plug-in Hybrid Electric Vehicle," Energies, MDPI, vol. 5(12), pages 1-32, November.
    3. Stephan Zentner & Jonas Asprion & Christopher Onder & Lino Guzzella, 2014. "An Equivalent Emission Minimization Strategy for Causal Optimal Control of Diesel Engines," Energies, MDPI, vol. 7(3), pages 1-21, February.
    4. Tobias Ott & Christopher Onder & Lino Guzzella, 2013. "Hybrid-Electric Vehicle with Natural Gas-Diesel Engine," Energies, MDPI, vol. 6(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Ritzmann & Oscar Chinellato & Richard Hutter & Christopher Onder, 2021. "Optimal Integrated Emission Management through Variable Engine Calibration," Energies, MDPI, vol. 14(22), pages 1-23, November.
    2. Yuping Zeng & Yang Cai & Changbao Chu & Guiyue Kou & Wei Gao, 2018. "Integrated Energy and Catalyst Thermal Management for Plug-In Hybrid Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-29, July.
    3. Antonio Rossetti & Nicola Andretta & Alarico Macor, 2022. "On the Use of the Disability-Adjusted Life Year (DALY) Estimator as a Metric to Optimally Manage ICE Emissions," Energies, MDPI, vol. 15(12), pages 1-14, June.
    4. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    5. Duhr, Pol & Christodoulou, Grigorios & Balerna, Camillo & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher H., 2021. "Time-optimal gearshift and energy management strategies for a hybrid electric race car," Applied Energy, Elsevier, vol. 282(PA).
    6. Yuping Zeng & Yang Cai & Guiyue Kou & Wei Gao & Datong Qin, 2018. "Energy Management for Plug-In Hybrid Electric Vehicle Based on Adaptive Simplified-ECMS," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    7. Gang Yao & Changbo Du & Quanbo Ge & Haoyu Jiang & Yide Wang & Mourad Ait-Ahmed & Luc Moreau, 2019. "Traffic-Condition-Prediction-Based HMA-FIS Energy-Management Strategy for Fuel-Cell Electric Vehicles," Energies, MDPI, vol. 12(23), pages 1-21, November.
    8. Teng Liu & Yuan Zou & Dexing Liu & Fengchun Sun, 2015. "Reinforcement Learning–Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 8(7), pages 1-18, July.
    9. Balerna, Camillo & Lanzetti, Nicolas & Salazar, Mauro & Cerofolini, Alberto & Onder, Christopher, 2020. "Optimal low-level control strategies for a high-performance hybrid electric power unit," Applied Energy, Elsevier, vol. 276(C).
    10. Di Guo & Changqing Du & Fuwu Yan, 2016. "Drivability-Related Discrete-Time Model Predictive Control of Mode Transition in Pre-Transmission Parallel Hybrid Powertrains," Energies, MDPI, vol. 9(9), pages 1-31, September.
    11. Hung, Yi-Hsuan & Tung, Yu-Ming & Chang, Chun-Hsin, 2016. "Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain," Applied Energy, Elsevier, vol. 173(C), pages 184-196.
    12. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Fengqi Zhang & Haiou Liu & Yuhui Hu & Junqiang Xi, 2016. "A Supervisory Control Algorithm of Hybrid Electric Vehicle Based on Adaptive Equivalent Consumption Minimization Strategy with Fuzzy PI," Energies, MDPI, vol. 9(11), pages 1-26, November.
    14. García, Antonio & Carlucci, Paolo & Monsalve-Serrano, Javier & Valletta, Andrea & Martínez-Boggio, Santiago, 2020. "Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion," Applied Energy, Elsevier, vol. 272(C).
    15. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    16. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls & Rokus van Iperen, 2020. "A Review of the Integrated Design and Control of Electrified Vehicles," Energies, MDPI, vol. 13(20), pages 1, October.
    17. Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
    18. Camillo Balerna & Marc-Philippe Neumann & Nicolò Robuschi & Pol Duhr & Alberto Cerofolini & Vittorio Ravaglioli & Christopher Onder, 2020. "Time-Optimal Low-Level Control and Gearshift Strategies for the Formula 1 Hybrid Electric Powertrain," Energies, MDPI, vol. 14(1), pages 1-30, December.
    19. Zeyu Chen & Jiahuan Lu & Bo Liu & Nan Zhou & Shijie Li, 2020. "Optimal Energy Management of Plug-In Hybrid Electric Vehicles Concerning the Entire Lifespan of Lithium-Ion Batteries," Energies, MDPI, vol. 13(10), pages 1-15, May.
    20. Johannes Schalk & Harald Aschemann, 2016. "A Causal and Real-Time Capable Power Management Algorithm for Off-Highway Hybrid Propulsion Systems," Energies, MDPI, vol. 10(1), pages 1-17, December.
    21. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    22. Chen, Zheng & Xia, Bing & You, Chenwen & Mi, Chunting Chris, 2015. "A novel energy management method for series plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 172-179.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Nüesch & Philipp Elbert & Michael Flankl & Christopher Onder & Lino Guzzella, 2014. "Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs," Energies, MDPI, vol. 7(2), pages 1-23, February.
    2. Christopher H. T. Lee & Chunhua Liu & K. T. Chau, 2014. "A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles," Energies, MDPI, vol. 7(3), pages 1-17, March.
    3. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    4. Zvonimir Dabčević & Branimir Škugor & Jakov Topić & Joško Deur, 2022. "Synthesis of Driving Cycles Based on Low-Sampling-Rate Vehicle-Tracking Data and Markov Chain Methodology," Energies, MDPI, vol. 15(11), pages 1-21, June.
    5. Florian Zurbriggen & Richard Hutter & Christopher Onder, 2016. "Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine," Energies, MDPI, vol. 9(1), pages 1-19, January.
    6. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    7. Hung, Yi-Hsuan & Wu, Chien-Hsun, 2015. "A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs," Applied Energy, Elsevier, vol. 139(C), pages 260-271.
    8. Yongpeng Shen & Zhendong He & Dongqi Liu & Binjie Xu, 2016. "Optimization of Fuel Consumption and Emissions for Auxiliary Power Unit Based on Multi-Objective Optimization Model," Energies, MDPI, vol. 9(2), pages 1-18, February.
    9. Richard Hutter & Johannes Ritzmann & Philipp Elbert & Christopher Onder, 2017. "Low-Load Limit in a Diesel-Ignited Gas Engine," Energies, MDPI, vol. 10(10), pages 1-27, September.
    10. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    11. Johannes Ritzmann & Oscar Chinellato & Richard Hutter & Christopher Onder, 2021. "Optimal Integrated Emission Management through Variable Engine Calibration," Energies, MDPI, vol. 14(22), pages 1-23, November.
    12. Pier Giuseppe Anselma, 2022. "Dynamic Programming Based Rapid Energy Management of Hybrid Electric Vehicles with Constraints on Smooth Driving, Battery State-of-Charge and Battery State-of-Health," Energies, MDPI, vol. 15(5), pages 1-25, February.
    13. Ioan Aschilean & Mihai Varlam & Mihai Culcer & Mariana Iliescu & Mircea Raceanu & Adrian Enache & Maria Simona Raboaca & Gabriel Rasoi & Constantin Filote, 2018. "Hybrid Electric Powertrain with Fuel Cells for a Series Vehicle," Energies, MDPI, vol. 11(5), pages 1-12, May.
    14. Xu, Xiaodan & Aziz, H.M. Abdul & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall, 2020. "A scalable energy modeling framework for electric vehicles in regional transportation networks," Applied Energy, Elsevier, vol. 269(C).
    15. Weichao Zhuang & Xiaowu Zhang & Huei Peng & Liangmo Wang, 2016. "Simultaneous Optimization of Topology and Component Sizes for Double Planetary Gear Hybrid Powertrains," Energies, MDPI, vol. 9(6), pages 1-17, May.
    16. Lan-Rong Dung & Hsiang-Fu Yuan & Jieh-Hwang Yen & Chien-Hua She & Ming-Han Lee, 2016. "A Lithium-Ion Battery Simulator Based on a Diffusion and Switching Overpotential Hybrid Model for Dynamic Discharging Behavior and Runtime Predictions," Energies, MDPI, vol. 9(1), pages 1-21, January.
    17. Johannes Ritzmann & Christian Peterhans & Oscar Chinellato & Manuel Gehlen & Christopher Onder, 2022. "Model Predictive Supervisory Control for Integrated Emission Management of Diesel Engines," Energies, MDPI, vol. 15(8), pages 1-22, April.
    18. Ganesh Mohan & Francis Assadian & Stefano Longo, 2013. "An Optimization Framework for Comparative Analysis of Multiple Vehicle Powertrains," Energies, MDPI, vol. 6(10), pages 1-31, October.
    19. Zhang, Pei & Yan, Fuwu & Du, Changqing, 2015. "A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 88-104.
    20. Mohammad Ali Karbaschian & Dirk Söffker, 2014. "Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives," Energies, MDPI, vol. 7(6), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:3148-3178:d:35981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.