IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i4p1821-1842d24653.html
   My bibliography  Save this article

Analytical and Experimental Study of Recycling Baffled Double-Pass Solar Air Heaters with Attached Fins

Author

Listed:
  • Chii Dong Ho

    (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei City 25137, Taiwan)

  • Hsuan Chang

    (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei City 25137, Taiwan)

  • Rei Chi Wang

    (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei City 25137, Taiwan)

  • Chun Sheng Lin

    (Energy and Opto-Electronic Materials Research Center, Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei City 25137, Taiwan)

Abstract

The study of the heat transfer of solar air heaters with a new design using an absorbing plate with fins and baffles, which facilitate the recycling of flowing air, is reported. The mathematical formulation and analytical analysis for such a recyclic baffled double-pass solar air heater were developed theoretically. The performance of the device was studied experimentally as well. The theoretical predicted and experimental results were compared with another design, i.e. , a downward-type single-pass solar air heater without recycle and double-pass operations reported in our previous work. Significant improvement in heat-transfer efficiency is achieved with the baffle and fin design due to the recycling heating and the extended heat transfer area. The effects of mass flow rate and recycle ratio on the heat-transfer efficiency enhancement as well as on the power consumption increment are also discussed.

Suggested Citation

  • Chii Dong Ho & Hsuan Chang & Rei Chi Wang & Chun Sheng Lin, 2013. "Analytical and Experimental Study of Recycling Baffled Double-Pass Solar Air Heaters with Attached Fins," Energies, MDPI, vol. 6(4), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:4:p:1821-1842:d:24653
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/4/1821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/4/1821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Wenfeng & Lin, Wenxian & Liu, Tao & Xia, Chaofeng, 2007. "Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters," Applied Energy, Elsevier, vol. 84(4), pages 425-441, April.
    2. Tonui, J.K. & Tripanagnostopoulos, Y., 2007. "Improved PV/T solar collectors with heat extraction by forced or natural air circulation," Renewable Energy, Elsevier, vol. 32(4), pages 623-637.
    3. Yeh, Ho-Ming, 1994. "Energy balances for upward-type baffled solar air heaters," Energy, Elsevier, vol. 19(9), pages 919-924.
    4. Yeh, H.-M. & Ho, C.-D. & Hou, J.-Z., 2002. "Collector efficiency of double-flow solar air heaters with fins attached," Energy, Elsevier, vol. 27(8), pages 715-727.
    5. Verma, S.K & Prasad, B.N, 2000. "Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters," Renewable Energy, Elsevier, vol. 20(1), pages 19-36.
    6. Ho, C.D. & Yeh, H.M. & Wang, R.C., 2005. "Heat-transfer enhancement in double-pass flat-plate solar air heaters with recycle," Energy, Elsevier, vol. 30(15), pages 2796-2817.
    7. Garg, H.P. & Sharma, V.K. & Bhargava, A.K., 1985. "Theory of multiple-pass solar air heaters," Energy, Elsevier, vol. 10(5), pages 589-599.
    8. Ho, C.D. & Yeh, C.W. & Hsieh, S.M., 2005. "Improvement in device performance of multi-pass flat-plate solar air heaters with external recycle," Renewable Energy, Elsevier, vol. 30(10), pages 1601-1621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    2. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, C.D. & Yeh, H.M. & Cheng, T.W. & Chen, T.C. & Wang, R.C., 2009. "The influences of recycle on performance of baffled double-pass flat-plate solar air heaters with internal fins attached," Applied Energy, Elsevier, vol. 86(9), pages 1470-1478, September.
    2. Ho, Chii-Dong & Chang, Hsuan & Wang, Rei-Chi & Lin, Chun-Sheng, 2012. "Performance improvement of a double-pass solar air heater with fins and baffles under recycling operation," Applied Energy, Elsevier, vol. 100(C), pages 155-163.
    3. Chii-Dong Ho & Hsuan Chang & Chun-Sheng Lin & Chun-Chieh Chao & Yi-En Tien, 2016. "Device Performance Improvement of Double-Pass Wire Mesh Packed Solar Air Heaters under Recycling Operation Conditions," Energies, MDPI, vol. 9(2), pages 1-10, January.
    4. Mohammadi, K. & Sabzpooshani, M., 2013. "Comprehensive performance evaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate," Energy, Elsevier, vol. 57(C), pages 741-750.
    5. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    6. Sabzpooshani, M. & Mohammadi, K. & Khorasanizadeh, H., 2014. "Exergetic performance evaluation of a single pass baffled solar air heater," Energy, Elsevier, vol. 64(C), pages 697-706.
    7. Tchinda, Réné, 2009. "A review of the mathematical models for predicting solar air heaters systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1734-1759, October.
    8. Ho, C.D. & Chen, T.C., 2008. "Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached," Renewable Energy, Elsevier, vol. 33(4), pages 655-664.
    9. Fan, Wenke & Kokogiannakis, Georgios & Ma, Zhenjun, 2019. "Optimisation of life cycle performance of a double-pass photovoltaic thermal-solar air heater with heat pipes," Renewable Energy, Elsevier, vol. 138(C), pages 90-105.
    10. Chii-Dong Ho & Hsuan Chang & Zih-Syuan Hong & Chien-Chang Huang & Yu-Han Chen, 2020. "Increasing the Device Performance of Recycling Double-Pass W-Ribs Solar Air Heaters," Energies, MDPI, vol. 13(9), pages 1-16, April.
    11. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    12. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    13. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    14. Singh, Satyender & Dhiman, Prashant, 2014. "Thermal and thermohydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined ap," Energy, Elsevier, vol. 72(C), pages 344-359.
    15. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    16. Ramadan, M.R.I. & El-Sebaii, A.A. & Aboul-Enein, S. & El-Bialy, E., 2007. "Thermal performance of a packed bed double-pass solar air heater," Energy, Elsevier, vol. 32(8), pages 1524-1535.
    17. Poongavanam, Ganesh Kumar & Panchabikesan, Karthik & Leo, Anto Joseph Deeyoko & Ramalingam, Velraj, 2018. "Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate," Renewable Energy, Elsevier, vol. 127(C), pages 213-229.
    18. Dezan, Daniel J. & Rocha, André D. & Ferreira, Wallace G., 2020. "Parametric sensitivity analysis and optimisation of a solar air heater with multiple rows of longitudinal vortex generators," Applied Energy, Elsevier, vol. 263(C).
    19. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    20. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:4:p:1821-1842:d:24653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.