IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i11p5921-5939d30372.html
   My bibliography  Save this article

Review of Microalgae Harvesting via Co-Pelletization with Filamentous Fungus

Author

Listed:
  • Sarman Oktovianus Gultom

    (Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., MN 55108, USA)

  • Bo Hu

    (Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., MN 55108, USA)

Abstract

Cultivation of microalgae to utilize CO 2 and nutrients in the wastewater to generate biofuel products is a promising research objective. However, the process faces tremendous technical difficulties, especially the harvest of microalgae cells, an economically challenging step. Several researchers recently reported co-culturing of filamentous fungi with microalgae so that microalgae cells can be co-pelletized in order to facilitate the cell harvest. This algae pelletization via the filamentous fungi represents an innovative approach to address both the cost and sustainability issues in algae biofuel production and also has potential with direct commercial applications. This paper reviews the current research status in this area and some possible drawbacks of this method in order to provide some possible directions for the future research.

Suggested Citation

  • Sarman Oktovianus Gultom & Bo Hu, 2013. "Review of Microalgae Harvesting via Co-Pelletization with Filamentous Fungus," Energies, MDPI, vol. 6(11), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:11:p:5921-5939:d:30372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/11/5921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/11/5921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    2. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuba, Eyasu Shumbulo & Kifle, Demeke, 2018. "Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 743-755.
    2. Kate Kim & Farzad Hourfar & Abdul Halim Bin Abdul Razik & Muhammad Rizwan & Ali Almansoori & Michael Fowler & Ali Elkamel, 2023. "Importance of Microalgae and Municipal Waste in Bioenergy Products Hierarchy—Integration of Biorefineries for Microalgae and Municipal Waste Processing: A Review," Energies, MDPI, vol. 16(17), pages 1-39, September.
    3. Mathimani, Thangavel & Mallick, Nirupama, 2018. "A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1103-1120.
    4. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Zhang, Yuejin & Bao, Keting & Wang, Juan & Zhao, Yongjun & Hu, Changwei, 2017. "Performance of mixed LED light wavelengths on nutrient removal and biogas upgrading by different microalgal-based treatment technologies," Energy, Elsevier, vol. 130(C), pages 392-401.
    6. Savienne M. F. E. Zorn & Cristiano E. R. Reis & Messias B. Silva & Bo Hu & Heizir F. De Castro, 2020. "Consortium Growth of Filamentous Fungi and Microalgae: Evaluation of Different Cultivation Strategies to Optimize Cell Harvesting and Lipid Accumulation," Energies, MDPI, vol. 13(14), pages 1-15, July.
    7. Chu, Ruoyu & Li, Shuangxi & Zhu, Liandong & Yin, Zhihong & Hu, Dan & Liu, Chenchen & Mo, Fan, 2021. "A review on co-cultivation of microalgae with filamentous fungi: Efficient harvesting, wastewater treatment and biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Barros, Ana I. & Gonçalves, Ana L. & Simões, Manuel & Pires, José C.M., 2015. "Harvesting techniques applied to microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1489-1500.
    10. Pengfei Guo & Yuejin Zhang & Yongjun Zhao, 2018. "Biocapture of CO 2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods," IJERPH, MDPI, vol. 15(3), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stevanovic Dalibor, 2016. "Common time variation of parameters in reduced-form macroeconomic models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 159-183, April.
    2. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    3. A. Fadlelmawla & M. Al-Otaibi, 2005. "Analysis of the Water Resources Status in Kuwait," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 555-570, October.
    4. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    5. Duan, Jinyun & Li, Chenwei & Xu, Yue & Wu, Chia-Huei, 2017. "Transformational leadership and employee voice behavior: a Pygmalion mechanism," LSE Research Online Documents on Economics 68035, London School of Economics and Political Science, LSE Library.
    6. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    7. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    8. Mammassis, Constantinos S. & Kostopoulos, Konstantinos C., 2019. "CEO goal orientations, environmental dynamism and organizational ambidexterity: An investigation in SMEs," European Management Journal, Elsevier, vol. 37(5), pages 577-588.
    9. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    10. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    11. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    12. Jugend, Daniel & da Silva, Sérgio Luis & Salgado, Manoel Henrique & Miguel, Paulo Augusto Cauchick, 2016. "Product portfolio management and performance: Evidence from a survey of innovative Brazilian companies," Journal of Business Research, Elsevier, vol. 69(11), pages 5095-5100.
    13. Ian Maitland & Mitsuhiro Umezu, 2006. "An Evaluation of Japan's Stakeholder Capitalism," Journal of Private Enterprise, The Association of Private Enterprise Education, vol. 22(Spring 20), pages 131-164.
    14. Craig Loschmann & Özge Bilgili & Melissa Siegel, 2019. "Considering the benefits of hosting refugees: evidence of refugee camps influencing local labour market activity and economic welfare in Rwanda," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 9(1), pages 1-23, December.
    15. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    16. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
    17. Walter Murray & Tomás Tinoco De Rubira & Adam Wigington, 2015. "A robust and informative method for solving large-scale power flow problems," Computational Optimization and Applications, Springer, vol. 62(2), pages 431-475, November.
    18. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    19. Rafael Epstein & Andres Neely & Andres Weintraub & Fernando Valenzuela & Sergio Hurtado & Guillermo Gonzalez & Alex Beiza & Mauricio Naveas & Florencio Infante & Fernando Alarcon & Gustavo Angulo & Cr, 2012. "A Strategic Empty Container Logistics Optimization in a Major Shipping Company," Interfaces, INFORMS, vol. 42(1), pages 5-16, February.
    20. Hilfer, R., 2006. "Macroscopic capillarity without a constitutive capillary pressure function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 209-225.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:11:p:5921-5939:d:30372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.