IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i9p3573-3585d20113.html
   My bibliography  Save this article

Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations

Author

Listed:
  • Chieh-Li Chen

    (Department of Aeronautics and Astronautics, National Cheng Kung University, No.1, University Road, Tainan City 70101, Taiwan)

  • Chia-En Ho

    (Department of Aeronautics and Astronautics, National Cheng Kung University, No.1, University Road, Tainan City 70101, Taiwan)

  • Her-Terng Yau

    (Department of Electrical Engineering, National Chin-Yi University of Technology, No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung City 41170, Taiwan)

Abstract

This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collector temperature and the engine thermal efficiency as the optimization parameters. The maximum output power of engine and its corresponding system parameters are determined using a genetic algorithm.

Suggested Citation

  • Chieh-Li Chen & Chia-En Ho & Her-Terng Yau, 2012. "Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations," Energies, MDPI, vol. 5(9), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:9:p:3573-3585:d:20113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/9/3573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/9/3573/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Shengbing & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Optimal performance of a generalized irreversible Carnot-engine," Applied Energy, Elsevier, vol. 81(4), pages 376-387, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Sauer & Hans-Detlev Kühl, 2019. "Experimental Investigation of Displacer Seal Geometry Effects in Stirling Cycle Machines," Energies, MDPI, vol. 12(21), pages 1-14, November.
    2. Yeongmin Kim & Wongee Chun & Kuan Chen, 2017. "Thermal-Flow Analysis of a Simple LTD (Low-Temperature-Differential) Heat Engine," Energies, MDPI, vol. 10(4), pages 1-16, April.
    3. Chenqi Tang & Lingen Chen & Huijun Feng & Wenhua Wang & Yanlin Ge, 2020. "Power Optimization of a Modified Closed Binary Brayton Cycle with Two Isothermal Heating Processes and Coupled to Variable-Temperature Reservoirs," Energies, MDPI, vol. 13(12), pages 1-21, June.
    4. Carlos Ulloa & José Luis Míguez & Jacobo Porteiro & Pablo Eguía & Antón Cacabelos, 2013. "Development of a Transient Model of a Stirling-Based CHP System," Energies, MDPI, vol. 6(7), pages 1-19, June.
    5. Mojtaba Alborzi & Faramarz Sarhaddi & Fatemeh Sobhnamayan, 2019. "Optimization of the thermal lag Stirling engine performance," Energy & Environment, , vol. 30(1), pages 156-175, February.
    6. Kuban, Lukasz & Stempka, Jakub & Tyliszczak, Artur, 2019. "A 3D-CFD study of a γ-type Stirling engine," Energy, Elsevier, vol. 169(C), pages 142-159.
    7. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    8. Hooshang, M. & Askari Moghadam, R. & Alizadeh Nia, S. & Masouleh, M. Tale, 2015. "Optimization of Stirling engine design parameters using neural networks," Renewable Energy, Elsevier, vol. 74(C), pages 855-866.
    9. Massimo Marino & Lorenza Misuri & Andrea Carati & Doriano Brogioli, 2014. "Proof-of-Concept of a Zinc-Silver Battery for the Extraction of Energy from a Concentration Difference," Energies, MDPI, vol. 7(6), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lingen & Li, Jun & Sun, Fengrui, 2008. "Generalized irreversible heat-engine experiencing a complex heat-transfer law," Applied Energy, Elsevier, vol. 85(1), pages 52-60, January.
    2. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    3. Lingen Chen & Kang Ma & Huijun Feng & Yanlin Ge, 2020. "Optimal Configuration of a Gas Expansion Process in a Piston-Type Cylinder with Generalized Convective Heat Transfer Law," Energies, MDPI, vol. 13(12), pages 1-20, June.
    4. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:9:p:3573-3585:d:20113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.