IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i7p2370-2380d18776.html
   My bibliography  Save this article

Fuel Characteristics of Biodiesel Produced from a High-Acid Oil from Soybean Soapstock by Supercritical-Methanol Transesterification

Author

Listed:
  • Cherng-Yuan Lin

    (Department of Marine Engineering, National Taiwan Ocean University, Keelung 202, Taiwan)

  • Yi-Wei Lin

    (Department of Marine Engineering, National Taiwan Ocean University, Keelung 202, Taiwan)

Abstract

A supercritical methanol transesterification method was applied to produce biodiesel from the high-acid oil of soybean soapstock. The fuel properties of biodiesel produced with various molar ratios of methanol to raw oil were analyzed and compared in this experimental study. Oleic acid (C18:1), linoleic acid (C18:2), and palmitic acid (C16:0) were the three main compounds in the high-acid oil-biodiesel. The saturated fatty acid content of the high-acid oil increased significantly due to the supercritical-methanol transesterification reaction. The fuel characteristics of the resulting high-acid oil, including the specific gravity and kinematic viscosity, were also greatly improved. The saturated fatty acid content of the biodiesel produced from the high-acid oil was higher than that of biodiesel from waste cooking oil produced by the subcritical transesterification using a strongly alkaline catalyst. The high-acid oil-biodiesel that was produced with a molar ratio of methanol to raw oil of 42 had the best fuel properties, including a higher distillation temperature and cetane index and a lower kinematic viscosity and water content, among the biodiesels with different molar ratios.

Suggested Citation

  • Cherng-Yuan Lin & Yi-Wei Lin, 2012. "Fuel Characteristics of Biodiesel Produced from a High-Acid Oil from Soybean Soapstock by Supercritical-Methanol Transesterification," Energies, MDPI, vol. 5(7), pages 1-11, July.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:7:p:2370-2380:d:18776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/7/2370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/7/2370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Cherng-Yuan & Huang, Tsan-Huang, 2012. "Cost-benefit evaluation of using biodiesel as an alternative fuel for fishing boats in Taiwan," Marine Policy, Elsevier, vol. 36(1), pages 103-107, January.
    2. Park, Ji-Yeon & Wang, Zhong-Ming & Kim, Deog-Keun & Lee, Jin-Suk, 2010. "Effects of water on the esterification of free fatty acids by acid catalysts," Renewable Energy, Elsevier, vol. 35(3), pages 614-618.
    3. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C. & Padmakumari, K., 2006. "Artificial neural networks used for the prediction of the cetane number of biodiesel," Renewable Energy, Elsevier, vol. 31(15), pages 2524-2533.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Yi-Wei & Go, Alchris Woo & Alivio, Roxanne Kathlyn O. & Santoso, Shella Permatasari & Angkawijaya, Artik Elisa & Soetaredjo, Felycia Edi & Agapay, Ramelito C., 2022. "Non-isothermal (trans)esterification of linoleic acid and soybean oil deodorizer distillate with methanol under subcritical conditions," Renewable Energy, Elsevier, vol. 197(C), pages 528-544.
    2. Francisco Anguebes-Franseschi & Mohamed Abatal & Ali Bassam & Mauricio A. Escalante Soberanis & Oscar May Tzuc & Lauro Bucio-Galindo & Atl Victor Cordova Quiroz & Claudia Alejandra Aguilar Ucan & Migu, 2018. "Esterification Optimization of Crude African Palm Olein Using Response Surface Methodology and Heterogeneous Acid Catalysis," Energies, MDPI, vol. 11(1), pages 1-15, January.
    3. Bobde, Kiran & Momin, Huda & Bhattacharjee, Ashish & Aikat, Kaustav, 2019. "Energy assessment and enhancement of the lipid yield of indigenous Chlorella sp. KA-24NITD using Taguchi approach," Renewable Energy, Elsevier, vol. 131(C), pages 1226-1235.
    4. Lin, Cherng-Yuan & Lu, Cherie, 2021. "Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    5. de Aguiar, Viviane Marques & de Souza, Andrea Luzia F. & Galdino, Fernanda S. & da Silva, Michelle Martha C. & Teixeira, Viviane Gomes & Lachter, Elizabeth R., 2017. "Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids," Renewable Energy, Elsevier, vol. 114(PB), pages 725-732.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuk Yeol Bae & Han Seung Jang & Bang Chul Jung & Dan Keun Sung, 2019. "Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    2. Li, Hui & Wang, Junchi & Ma, Xiaoling & Wang, Yangyang & Li, Guoning & Guo, Min & Cui, Ping & Lu, Wanpeng & Zhou, Shoujun & Yu, Mingzhi, 2021. "Carbonized MIL−100(Fe) used as support for recyclable solid acid synthesis for biodiesel production," Renewable Energy, Elsevier, vol. 179(C), pages 1191-1203.
    3. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    4. K. E. K. Vimal & S. Vinodh & A. Raja, 2017. "Optimization of process parameters of SMAW process using NN-FGRA from the sustainability view point," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1459-1480, August.
    5. Cherng-Yuan Lin, 2013. "Effects of Biodiesel Blend on Marine Fuel Characteristics for Marine Vessels," Energies, MDPI, vol. 6(9), pages 1-11, September.
    6. Ibrahim, Shaimaa M., 2021. "Preparation, characterization and application of novel surface-modified ZrSnO4 as Sn-based TMOs catalysts for the stearic acid esterification with methanol to biodiesel," Renewable Energy, Elsevier, vol. 173(C), pages 151-163.
    7. Javed, Syed & Baig, Rahmath Ulla & Murthy, Y.V.V. Satyanarayana, 2018. "Study on noise in a hydrogen dual-fuelled zinc-oxide nanoparticle blended biodiesel engine and the development of an artificial neural network model," Energy, Elsevier, vol. 160(C), pages 774-782.
    8. Kanjaikaew, Utaiwan & Tongurai, Chakrit & Chongkhong, Sininart & Prasertsit, Kulchanat, 2018. "Two-step esterification of palm fatty acid distillate in ethyl ester production: Optimization and sensitivity analysis," Renewable Energy, Elsevier, vol. 119(C), pages 336-344.
    9. Idowu, Ibijoke & Pedrola, Montserrat Ortoneda & Wylie, Steve & Teng, K.H. & Kot, Patryk & Phipps, David & Shaw, Andy, 2019. "Improving biodiesel yield of animal waste fats by combination of a pre-treatment technique and microwave technology," Renewable Energy, Elsevier, vol. 142(C), pages 535-542.
    10. Doğan, Tuba Hatice, 2016. "The testing of the effects of cooking conditions on the quality of biodiesel produced from waste cooking oils," Renewable Energy, Elsevier, vol. 94(C), pages 466-473.
    11. Mota, Francisco A.S. & Costa Filho, J.T. & Barreto, G.A., 2019. "The Nile tilapia viscera oil extraction for biodiesel production in Brazil: An economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 1-10.
    12. Evangelos G. Giakoumis & Christos K. Sarakatsanis, 2019. "A Comparative Assessment of Biodiesel Cetane Number Predictive Correlations Based on Fatty Acid Composition," Energies, MDPI, vol. 12(3), pages 1-30, January.
    13. Noushabadi, Abolfazl Sajadi & Dashti, Amir & Raji, Mojtaba & Zarei, Alireza & Mohammadi, Amir H., 2020. "Estimation of cetane numbers of biodiesel and diesel oils using regression and PSO-ANFIS models," Renewable Energy, Elsevier, vol. 158(C), pages 465-473.
    14. Bengtsson, Selma & Fridell, Erik & Andersson, Karin, 2012. "Environmental assessment of two pathways towards the use of biofuels in shipping," Energy Policy, Elsevier, vol. 44(C), pages 451-463.
    15. Kaya, Canan & Hamamci, Candan & Baysal, Akin & Akba, Osman & Erdogan, Sait & Saydut, Abdurrahman, 2009. "Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production," Renewable Energy, Elsevier, vol. 34(5), pages 1257-1260.
    16. Kaur, Navjot & Ali, Amjad, 2015. "Preparation and application of Ce/ZrO2−TiO2/SO42− as solid catalyst for the esterification of fatty acids," Renewable Energy, Elsevier, vol. 81(C), pages 421-431.
    17. Manieniyan, V. & Vinodhini, G. & Senthilkumar, R. & Sivaprakasam, S., 2016. "Wear element analysis using neural networks of a DI diesel engine using biodiesel with exhaust gas recirculation," Energy, Elsevier, vol. 114(C), pages 603-612.
    18. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    19. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    20. Mendonça, Iasmin M. & Paes, Orlando A.R.L. & Maia, Paulo J.S. & Souza, Mayane P. & Almeida, Richardson A. & Silva, Cláudia C. & Duvoisin, Sérgio & de Freitas, Flávio A., 2019. "New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study," Renewable Energy, Elsevier, vol. 130(C), pages 103-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:7:p:2370-2380:d:18776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.