IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i2p352-367d11391.html
   My bibliography  Save this article

The Health Impacts of Ethanol Blend Petrol

Author

Listed:
  • Tom Beer

    (CSIRO Marine and Atmospheric Research, PB1, Aspendale Vic. 3125, Australia)

  • John Carras

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • David Worth

    (Orbital Australia, Balcatta, WA, 6021, Australia)

  • Nick Coplin

    (Orbital Australia, Balcatta, WA, 6021, Australia)

  • Peter K. Campbell

    (CSIRO Marine and Atmospheric Research, PB1, Aspendale Vic. 3125, Australia
    These authors contributed equally to this work.)

  • Bin Jalaludin

    (Centre for Research, Evidence Management and Surveillance, SSWAHS, Australia)

  • Dennys Angove

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Merched Azzi

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Steve Brown

    (Diesel Test Australia, PO Box 400 Kenthurst 2156 NSW, Australia)

  • Ian Campbell

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Martin Cope

    (CSIRO Marine and Atmospheric Research, PB1, Aspendale Vic. 3125, Australia)

  • Owen Farrell

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Ian Galbally

    (CSIRO Marine and Atmospheric Research, PB1, Aspendale Vic. 3125, Australia)

  • Stephen Haiser

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Brendan Halliburton

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Robert Hynes

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia
    These authors contributed equally to this work.)

  • David Jacyna

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Melita Keywood

    (CSIRO Marine and Atmospheric Research, PB1, Aspendale Vic. 3125, Australia)

  • Steven Lavrencic

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Sarah Lawson

    (CSIRO Marine and Atmospheric Research, PB1, Aspendale Vic. 3125, Australia)

  • Sunhee Lee

    (CSIRO Marine and Atmospheric Research, PB1, Aspendale Vic. 3125, Australia)

  • Imants Liepa

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia
    These authors contributed equally to this work.)

  • James McGregor

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Peter Nancarrow

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia
    These authors contributed equally to this work.)

  • Michael Patterson

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Jennifer Powell

    (CSIRO Marine and Atmospheric Research, PB1, Aspendale Vic. 3125, Australia)

  • Anne Tibbett

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Jason Ward

    (CSIRO Marine and Atmospheric Research, PB1, Aspendale Vic. 3125, Australia)

  • Stephen White

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • David Williams

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia)

  • Rosemary Wood

    (CSIRO Energy Technology, Lucas Heights, NSW, 2234, Australia
    These authors contributed equally to this work.)

Abstract

A measurement program designed to evaluate health impacts or benefits of using ethanol blend petrol examined exhaust and evaporative emissions from 21 vehicles representative of the current Australian light duty petrol (gasoline) vehicle fleet using a composite urban emissions drive cycle. The fuels used were unleaded petrol (ULP), ULP blended with either 5% ethanol (E5) or 10% ethanol (E10). The resulting data were combined with inventory data for Sydney to determine the expected fleet emissions for different uptakes of ethanol blended fuel. Fleet ethanol compatibility was estimated to be 60% for 2006, and for the air quality modelling it was assumed that in 2011 over 95% of the fleet would be ethanol compatible. Secondary organic aerosol (SOA) formation from ULP, E5 and E10 emissions was studied under controlled conditions by the use of a smog chamber. This was combined with meteorological data from Sydney for February 2004 and the emission data (both measured and inventory data) to model pollutant concentrations in Sydney’s airshed for 2006 and 2011. These concentrations were combined with the population distribution to evaluate population exposure to the pollutant. There is a health benefit to the Sydney population arising from a move from ULP to ethanol blends in spark-ignition vehicles. Potential health cost savings for Urban Australia (Sydney, Melbourne, Brisbane and Perth) are estimated to be A$39 million (in 2007 dollars) for a 50% uptake (by ethanol compatible vehicles) of E10 in 2006 and $42 million per annum for a 100% take up of E10 in 2011. Over 97% of the estimated health savings are due to reduced emissions of PM 2.5 and consequent reduced impacts on mortality and morbidity (e.g., asthma, cardiovascular disease). Despite more petrol-driven vehicles predicted for 2011, the quantified health impact differential between ULP and ethanol fuelled vehicles drops from 2006 to 2011. This is because modern petrol vehicles, with lower emissions than their older counterparts, will make up a higher proportion of the fleet in the future. Hence the beneficial effects of reductions in particulate matter become less significant as the fleet as a whole produces lower emissions.

Suggested Citation

  • Tom Beer & John Carras & David Worth & Nick Coplin & Peter K. Campbell & Bin Jalaludin & Dennys Angove & Merched Azzi & Steve Brown & Ian Campbell & Martin Cope & Owen Farrell & Ian Galbally & Stephen, 2011. "The Health Impacts of Ethanol Blend Petrol," Energies, MDPI, vol. 4(2), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:2:p:352-367:d:11391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/2/352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/2/352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niven, Robert K., 2005. "Ethanol in gasoline: environmental impacts and sustainability review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 535-555, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Yung-Chen & Tsai, Jiun-Horng & Wang, I-Ting, 2013. "Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend," Applied Energy, Elsevier, vol. 102(C), pages 93-100.
    2. White, Eric M. & Latta, Greg & Alig, Ralph J. & Skog, Kenneth E. & Adams, Darius M., 2013. "Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard," Energy Policy, Elsevier, vol. 58(C), pages 64-74.
    3. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    4. Viju, Crina & Kerr, William A., 2010. "Is The Subsidy For Biofuels The Way To Go?," 14th ICABR Conference, June 16-18, 2010, Ravello, Italy 188117, International Consortium on Applied Bioeconomy Research (ICABR).
    5. Hernandez, Marcel & Menchaca, Lizette & Mendoza, Alberto, 2014. "Fuel economy and emissions of light-duty vehicles fueled with ethanol–gasoline blends in a Mexican City," Renewable Energy, Elsevier, vol. 72(C), pages 236-242.
    6. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
    7. Costagliola, M.A. & De Simio, L. & Iannaccone, S. & Prati, M.V., 2013. "Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends," Applied Energy, Elsevier, vol. 111(C), pages 1162-1171.
    8. Yuanxu Li & Zhi Ning & Chia-fon F. Lee & Timothy H. Lee & Junhao Yan, 2018. "Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends," Energies, MDPI, vol. 11(5), pages 1-16, May.
    9. García, Carlos A. & Manzini, Fabio & Islas, Jorge, 2010. "Air emissions scenarios from ethanol as a gasoline oxygenate in Mexico City Metropolitan Area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3032-3040, December.
    10. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Liu, Yang & Tang, Chenglong & Zhan, Cheng & Wu, Yingtao & Yang, Meng & Huang, Zuohua, 2019. "Low temperature auto-ignition characteristics of methylcyclohexane/ethanol blend fuels: Ignition delay time measurement and kinetic analysis," Energy, Elsevier, vol. 177(C), pages 465-475.
    12. Sobrino, Fernando Hernández & Monroy, Carlos Rodríguez, 2009. "Critical analysis of the European Union directive which regulates the use of biofuels: An approach to the Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2675-2681, December.
    13. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    14. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z., 2009. "Potential contribution of bioethanol fuel to the transport sector of Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2197-2200, October.
    15. Makky, Ahmed Al & Alaswad, A & Gibson, Desmond & Olabi, A.G, 2017. "Renewable energy scenario and environmental aspects of soil emission measurements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1157-1173.
    16. Hira, Anil, 2011. "Sugar rush: Prospects for a global ethanol market," Energy Policy, Elsevier, vol. 39(11), pages 6925-6935.
    17. Clairotte, M. & Adam, T.W. & Zardini, A.A. & Manfredi, U. & Martini, G. & Krasenbrink, A. & Vicet, A. & Tournié, E. & Astorga, C., 2013. "Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline," Applied Energy, Elsevier, vol. 102(C), pages 44-54.
    18. Liu, Jin’e & Lin, Bin-Le & Sagisaka, Masayuki, 2012. "Sustainability assessment of bioethanol and petroleum fuel production in Japan based on emergy analysis," Energy Policy, Elsevier, vol. 44(C), pages 23-33.
    19. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    20. Gravalos, I. & Moshou, D. & Gialamas, Th. & Xyradakis, P. & Kateris, D. & Tsiropoulos, Z., 2013. "Emissions characteristics of spark ignition engine operating on lower–higher molecular mass alcohol blended gasoline fuels," Renewable Energy, Elsevier, vol. 50(C), pages 27-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:2:p:352-367:d:11391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.