IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i10p1691-1703d9780.html
   My bibliography  Save this article

Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

Author

Listed:
  • Omotola Babajide

    (Environmental and Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa)

  • Leslie Petrik

    (Environmental and Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa)

  • Bamikole Amigun

    (Environmental and Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa
    Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch, South Africa)

  • Farouk Ameer

    (Environmental and Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa)

Abstract

Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 °C and a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

Suggested Citation

  • Omotola Babajide & Leslie Petrik & Bamikole Amigun & Farouk Ameer, 2010. "Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology," Energies, MDPI, vol. 3(10), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:10:p:1691-1703:d:9780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/10/1691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/10/1691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Anilkumar R. & Rathod, Virendra K., 2018. "Calcium diglyceroxide catalyzed biodiesel production from waste cooking oil in the presence of microwave: Optimization and kinetic studies," Renewable Energy, Elsevier, vol. 121(C), pages 757-767.
    2. Gude, Veera Gnaneswar & Grant, Georgene Elizabeth, 2013. "Biodiesel from waste cooking oils via direct sonication," Applied Energy, Elsevier, vol. 109(C), pages 135-144.
    3. Veljković, Vlada B. & Avramović, Jelena M. & Stamenković, Olivera S., 2012. "Biodiesel production by ultrasound-assisted transesterification: State of the art and the perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1193-1209.
    4. Sara Almasi & Barat Ghobadian & Gholam Hassan Najafi & Talal Yusaf & Masoud Dehghani Soufi & Seyed Salar Hoseini, 2019. "Optimization of an Ultrasonic-Assisted Biodiesel Production Process from One Genotype of Rapeseed (TERI (OE) R-983) as a Novel Feedstock Using Response Surface Methodology," Energies, MDPI, vol. 12(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    2. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    3. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    4. Misra, R.D. & Murthy, M.S., 2010. "Straight vegetable oils usage in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3005-3013, December.
    5. Haşimoğlu, Can & Ciniviz, Murat & Özsert, İbrahim & İçingür, Yakup & Parlak, Adnan & Sahir Salman, M., 2008. "Performance characteristics of a low heat rejection diesel engine operating with biodiesel," Renewable Energy, Elsevier, vol. 33(7), pages 1709-1715.
    6. George Anastopoulos & Ypatia Zannikou & Stamoulis Stournas & Stamatis Kalligeros, 2009. "Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters," Energies, MDPI, vol. 2(2), pages 1-15, June.
    7. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    8. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    9. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    10. Szulczyk, Kenneth R. & McCarl, Bruce A., 2010. "Market penetration of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2426-2433, October.
    11. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    12. Al-Hwaiti, Mohammad S. & Alsbou, Eid M. & Al Haddad, Rawan M. & Osman, Ahmed I. & Jrai, Ahmed Abu & Al-Muhtaseb, Ala’a H. & Hasan, Ahmad O. & Morgan, Kevin & El-Sayed, El-Sayed M. & Al-Fatesh, Ahmed S, 2020. "Spatio-temporal analyses of extracted citrullus colocynthis seeds (Handal seed oil) as biofuel in internal combustion engine," Renewable Energy, Elsevier, vol. 166(C), pages 234-244.
    13. Ogbu, I.M. & Ajiwe, V.I.E., 2016. "FTIR studies of thermal stability of the oils and methyl esters from Afzelia africana and Hura crepitans seeds," Renewable Energy, Elsevier, vol. 96(PA), pages 203-208.
    14. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    15. Devan, P.K. & Mahalakshmi, N.V., 2009. "A study of the performance, emission and combustion characteristics of a compression ignition engine using methyl ester of paradise oil-eucalyptus oil blends," Applied Energy, Elsevier, vol. 86(5), pages 675-680, May.
    16. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    17. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    18. Manzano-Agugliaro, F. & Sanchez-Muros, M.J. & Barroso, F.G. & Martínez-Sánchez, A. & Rojo, S. & Pérez-Bañón, C., 2012. "Insects for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3744-3753.
    19. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    20. Szulczyk, Kenneth R. & McCarl, Bruce A. & Cornforth, Gerald, 2010. "Market penetration of ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 394-403, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:10:p:1691-1703:d:9780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.