IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2321-d1647927.html
   My bibliography  Save this article

A Novel Methodology for Assessing the Electricity Generation Potential of Biomass Residues: A Case Study in the State of Minas Gerais, Brazil

Author

Listed:
  • Fernando Bruno Dovichi Filho

    (Excellence Group in Thermal Power and Distributed Generation, Federal University of Itajubá, Itajubá 37500-903, Brazil)

  • Electo Eduardo Silva Lora

    (Excellence Group in Thermal Power and Distributed Generation, Federal University of Itajubá, Itajubá 37500-903, Brazil)

  • Diego Mauricio Yepes Maya

    (Excellence Group in Thermal Power and Distributed Generation, Federal University of Itajubá, Itajubá 37500-903, Brazil)

  • José Carlos Escobar Palacio

    (Excellence Group in Thermal Power and Distributed Generation, Federal University of Itajubá, Itajubá 37500-903, Brazil)

  • Osvaldo Jose Venturini

    (Excellence Group in Thermal Power and Distributed Generation, Federal University of Itajubá, Itajubá 37500-903, Brazil)

  • Laura Vieira Maia de Sousa

    (Excellence Group in Thermal Power and Distributed Generation, Federal University of Itajubá, Itajubá 37500-903, Brazil)

  • Flavio Dias Mayer

    (Department Chemical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil)

  • Marcelo Risso Errera

    (Department of Environmental Engineering, Federal University of Paraná, Curitiba 80060-000, Brazil)

Abstract

This study presents a methodology for assessing the technical and economic potential of electricity generation from biomass residues, using thermochemical conversion technologies. Applied in the state of Minas Gerais, Brazil, the analysis focuses on residues from corn, soybean, coffee, eucalyptus, and sugarcane. A multi-criteria decision-making (MCDM) approach, integrated with GIS, was used to identify the most viable biomass sources and most suitable conversion technologies, namely the Rankine cycle, organic Rankine cycle, and gasification with internal combustion engines, based on Technological Readiness Levels (TRLs). Eucalyptus emerged as the most suitable residue due to its high energy density, while sugarcane residues were the most abundant. The economic feasibility analysis indicates levelized costs ranging from USD 0.10 to USD 0.24 per kWh, with the conventional Rankine cycle emerging as the most cost-effective option for plants with a capacity exceeding 5 MWe. The proposed methodology supports strategic bioenergy planning by integrating geospatial, technological, and economic factors.

Suggested Citation

  • Fernando Bruno Dovichi Filho & Electo Eduardo Silva Lora & Diego Mauricio Yepes Maya & José Carlos Escobar Palacio & Osvaldo Jose Venturini & Laura Vieira Maia de Sousa & Flavio Dias Mayer & Marcelo R, 2025. "A Novel Methodology for Assessing the Electricity Generation Potential of Biomass Residues: A Case Study in the State of Minas Gerais, Brazil," Energies, MDPI, vol. 18(9), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2321-:d:1647927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dias, Tomás Andrade da Cunha & Lora, Electo Eduardo Silva & Maya, Diego Mauricio Yepes & Olmo, Oscar Almazán del, 2021. "Global potential assessment of available land for bioenergy projects in 2050 within food security limits," Land Use Policy, Elsevier, vol. 105(C).
    2. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    3. Lovrak, Ana & Pukšec, Tomislav & Duić, Neven, 2020. "A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste," Applied Energy, Elsevier, vol. 267(C).
    4. Fernando Bruno Dovichi Filho & Laura Vieira Maia de Sousa & Electo Eduardo Silva Lora & José Carlos Escobar Palacio & Pedro Tavares Borges & Regina Mambeli Barros & René Lesme Jaen & Marcelo Risso Err, 2025. "A Methodology for the Feasibility Assessment of Using Crop Residues for Electricity Production Through GIS-MCD and Its Application in a Case Study," Agriculture, MDPI, vol. 15(3), pages 1-29, February.
    5. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Dovichi Filho, Fernando Bruno & Lora, Electo Eduardo Silva & Palacio, Jose Carlos Escobar & Venturini, Osvaldo José & Jaén, René Lesme, 2023. "An approach to technology selection in bioelectricity technical potential assessment: A Brazilian case study," Energy, Elsevier, vol. 272(C).
    7. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    8. Famoso, F. & Prestipino, M. & Brusca, S. & Galvagno, A., 2020. "Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators," Applied Energy, Elsevier, vol. 274(C).
    9. Maw Maw Tun & Dagmar Juchelkova & Myo Min Win & Aung Myat Thu & Tomáš Puchor, 2019. "Biomass Energy: An Overview of Biomass Sources, Energy Potential, and Management in Southeast Asian Countries," Resources, MDPI, vol. 8(2), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    2. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    3. Magdalena Krysiak & Aldona Kluczek, 2021. "A Multifaceted Challenge to Enhance Multicriteria Decision Support for Energy Policy," Energies, MDPI, vol. 14(14), pages 1-20, July.
    4. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    5. Hernández-Torres, José Antonio & Sánchez-Lozano, Daniel & Sánchez-Herrera, Reyes & Vera, David & Torreglosa, Juan P., 2025. "Integrated multi-criteria decision-making approach for power generation technology selection in sustainable energy systems," Renewable Energy, Elsevier, vol. 243(C).
    6. Bellone, Yuri & Croci, Michele & Impollonia, Giorgio & Nik Zad, Amirhossein & Colauzzi, Michele & Campana, Pietro Elia & Amaducci, Stefano, 2024. "Simulation-Based Decision Support for Agrivoltaic Systems," Applied Energy, Elsevier, vol. 369(C).
    7. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Elkadeem, Mohamed R. & Younes, Ali & Jurasz, Jakub & AlZahrani, Atif S. & Abido, Mohammad A., 2025. "A spatio-temporal decision-making model for solar, wind, and hybrid systems – A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 383(C).
    9. Maghsoud Amiri & Mohammad Hashemi-Tabatabaei & Mohammad Ghahremanloo & Mehdi Keshavarz-Ghorabaee & Edmundas Kazimieras Zavadskas & Arturas Kaklauskas, 2021. "Evaluating Life Cycle of Buildings Using an Integrated Approach Based on Quantitative-Qualitative and Simplified Best-Worst Methods (QQM-SBWM)," Sustainability, MDPI, vol. 13(8), pages 1-28, April.
    10. Indre Siksnelyte-Butkiene & Tomas Karpavicius & Dalia Streimikiene & Tomas Balezentis, 2022. "The Achievements of Climate Change and Energy Policy in the European Union," Energies, MDPI, vol. 15(14), pages 1-17, July.
    11. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    12. Abdel-Basset, Mohamed & Gamal, Abduallah & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study," Renewable Energy, Elsevier, vol. 168(C), pages 1073-1095.
    13. Yevang Nhiavue & Han Soo Lee & Sylvester William Chisale & Jonathan Salar Cabrera, 2022. "Prioritization of Renewable Energy for Sustainable Electricity Generation and an Assessment of Floating Photovoltaic Potential in Lao PDR," Energies, MDPI, vol. 15(21), pages 1-20, November.
    14. Gyanendra Singh Sisodia & Einas Awad & Heba Alkhoja & Bruno S. Sergi, 2020. "Strategic business risk evaluation for sustainable energy investment and stakeholder engagement: A proposal for energy policy development in the Middle East through Khalifa funding and land subsidies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2789-2802, September.
    15. Thanuja Gelanigama Mesthrige & Prasad Kaparaju, 2025. "Decarbonisation of Natural Gas Grid: A Review of GIS-Based Approaches on Spatial Biomass Assessment, Plant Siting and Biomethane Grid Injection," Energies, MDPI, vol. 18(3), pages 1-35, February.
    16. Akca, Mehmet Sadik & Sarikaya, Omer Visali & Doker, Mehmet Fatih & Ocak, Fatih & Kirlangicoglu, Cem & Karaaslan, Yakup & Satoglu, Sule Itir & Altinbas, Mahmut, 2023. "A detailed GIS based assessment of bioenergy plant locations using location-allocation algorithm," Applied Energy, Elsevier, vol. 352(C).
    17. Chakraborty, Abhishek & Biswal, Anima & Pandey, Varun & Shadab, Syed & Kalyandeep, K. & Murthy, C.S. & Seshasai, M.V.R. & Rao, P.V.N. & Jain, Niveta & Sehgal, V.K. & Kaushik, Nirmala & Singh, Sanjay &, 2022. "Developing a spatial information system of biomass potential from crop residues over India: A decision support for planning and establishment of biofuel/biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    18. Herve Tevenim Mewenemesse & Qiang Yan & Prince Foli Acouetey, 2023. "Policy Analysis of Low-Carbon Energy Transition in Senegal Using a Multi-Criteria Decision Approach Based on Principal Component Analysis," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    19. Bompard, E.F. & Corgnati, S.P. & Grosso, D. & Huang, T. & Mietti, G. & Profumo, F., 2022. "Multidimensional assessment of the energy sustainability and carbon pricing impacts along the Belt and Road Initiative," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2321-:d:1647927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.